ILURENCE ··· ORICON ··· (50)			Florence, OR 97439 Phone: (541) 997 - 8237 Fax: (541) 997 - 4109		
Type of Request					
Type I Type II Type III Proposal:	THIS SECTION FOR OFFIC Type IV	E USE ONLY			
	Applicant Inform	ation			
William Johnson Construction	Inc, c/o Mike Johnson	Phone 1			
mike@cbcoast.co E-mail Address: William Johnson Constr	m uction Inc,	Phone 2:			
Address: Signature: Ha Applicant's Representative (if any):	alley Sheldon, Sheldon Planning,	Date hailey@sheldonplanning.com	a: <u>2-212 3223</u> m, (541) 968-4686		
Dovid I Biolonhour	Property Owner Info	rmation			
E-mail Address:		Phone 1: Phone 2:			
Signature:	Liev Sheldon, Sheldon Planning, I	Date hailey@sheldonplanning.com	e: Aug. 28, 2023 n, (541) 968-4686		
NOTE: If applicant and property owner are no the applicant to act as the agent for the prop agrees to allow the Planning Staff and the Pla special arrangements are necessary.	ot the same individual, a signed let erty owner must be submitted to t anning Commission anto the prope	ter of authorization from the the City along with this applic rty. Please inform Planning S	property owner which allows ation. The property owner taff if prior notificction or		
	For Office Use Or	nly:			
Renzier 1	Apt Devis		foh/bg		

Site Address: N/A. Corner of 37th and Oak.	
General Description:	
Assessor's Map No.: Tax lot(s): Zoning District:	
Conditions & land uses within 300 feet of the proposed site that is one-acre or larger and within 10 the site that is less than an acre OR add this information to the off-site conditions man	10 feet of
(FCC 10-1-1-4-B-3):	
Project Description	
Square feet of new: Square feet of existing: 0	
Hours of operation: Existing parking spaces:	
ls any project phasing anticipated? (Check One): Yes 🗌 No 🔳	_
Timetable of proposed improvements:	
Will there be impacts such as noise, dust, or outdoor storage? Yes 🗌 No 🔳	1
If yes, please describe:	
Proposal: (Describe the project in detail, what is being proposed, size, objectives, and what is desired by the project. Attach additional sheets as necessary)	
See attached	
For Office Use Only:	
Pisid	
hate Submitted: Fee:	1

Applicant	Mike Johnson		
Owner	David Bielenberg		
Agents	Civil Engineer: Clint Beecroft, P.E., EGR & Associates Inc. Contractor: Norm Wells, Ray Wells Inc. Landscaper: Lisa Walter-Sedlacek, Laurel Bay Gardens Planner: Hailey Sheldon, Sheldon Planning LLC		
Site Address	37 th & Oak		
Map No.	18S 12W 22		
Parcel No.	1200 & 200		
Lane County Account No.	783785 & 1327210		
Size	3.13 & 0.21 Acres		
Zoning	High Density Residential		
Special Development Considerations and Overlays	Flood Hazard: N/A NRCS Soils Map: Yaquina loamy fine sand City of Florence Significant Wetland Areas Map: None City of Florence Hazards Map: Active Dune Advancing Edge; Creeks* National Wetland Inventory: Riverine* / Statewide Wetland Inventory: Riverine* *See Wetland Delineation – No Wetland or Creeks Present		
Access	37 th Street		
Site Description	Vacant		
Surrounding Zoning & Use	Residential, City Water Tanks, Florence Golf Links; See Attachment 2 Vicinity Maps		

OVERVIEW

This application is for final Planned Unit Development approval, for the project preliminarily approved by Resolution PC 22 21 PUD 01, PC 22 23 SUB 02, & SR 22 48 SIR 13.

This narrative addresses: (1) the conditions of preliminary approval and (2) FCC Title 10 Chapter 23 Planned Unit Development 10-23-11 Approval of the Final Development Plan.

ATTACHMENTS

The following supporting documents are attached and available electronically at: <u>https://www.dropbox.com/scl/fo/wviavfgbu6t6srj8szei2/h?rlkey=j2q9q6qu29dmydkxjh69jt7zf&</u><u>dl=0</u>

- 1. Civil Plans
- 2. Architectural Plans
- 3. Landscpaing Plans
- 4. Stormwater Management Report Supplemental: Final Stormwater System Calculations

NARRATIVE

Preliminary PUD Conditions of Approval

The narrative below addresses the conditions of approval of preliminary subdivision and PUD approval.

Resolution PC 22 21 PUD 01, PC 22 23 SUB 02, & SR 22 48 SIR 13: Conditions of Approval

[...]

FCC 10-3:

4.1 The shared/common parking area shall meet grading requirements so as not to drain storm water over public ROWs. Parking lot surfacing shall not encroach upon public ROWs. This shall be in accordance with FCC 10-3-8-C. This shall be included on a detailed parking lot plan prior to or in conjunction with first building permits and subject to Public Works and Community Development Department approval.

Attachment 1 Sheets C7 Parking Lot Grading Plan – West Half, C8 Parking Lot Grading Plan – East Half, and C9 Access and Parking Plan satisfy this condition.

4.2 [Part 1] Parking spaces shall be screened with evergreen shrubs that reach a minimum 36 inches in height above parking lot grade level at maturity so that headlights do not shine onto adjacent residential uses and zones in accordance with FCC 10-3-8-D and FCC 10-34-3-7. Stormwater facility plantings in the 37th St ROW may meet this screening requirement or this requirement may be met through fencing installed between parking spaces and sidewalk/PUE. The screening plan shall be included in the final landscaping/stormwater facility planting [Part 2] with a proposed schedule of planting at final PUD.

Attachment 2 Sheet L2 satisfies Part 1 of this condition – proposing Escallonia x exoniensis (aka Pink Princess Escallonia) in 5 gallon containers for screening. The Tree and Plant List for the City of Florence lists the diameter and height (at maturity) of Pink Princess Escallonia as 5' and 5', respectively; the List also labels this plant "good for tall hedges" and "good for high summer / winter wind."

Regarding Part 2, schedule of planting: all landscaping is proposed to be planted prior to application for Certificates of Occupancy of the final/last townhome structure.

4.3 The shared/common parking area shall be in compliance with FCC 10-3-8-E. A curb or wheel stop of not less than 6 inches shall be installed abutting streets and interior lot lines to prevent encroachment onto adjacent private property, public walkways, sidewalks, or minimum landscaped area required in accordance with FCC 10-3-8-E2.

Attachment 1 Sheet C9 Access and Parking Plan satisfies this condition.

4.4 A complete parking lot plan in accordance with FCC 10-3-8 K and FCC 10-3-8-L shall be submitted prior to or in conjunction with final PUD shall include the following items not previously submitted:

- Curb cut dimensions
- Dimensions, continuity, and substance of screening
- Grading, drainage, surfacing, and sub grading details
- Specifications for signs, bumper guards, and curbs
- Each Space shall have double line striping with two feet wide on center
- The width of any striping line in an approved parking area shall be a minimum 4" wide

Attachment 1 Sheet C9 Access and Parking Plan satisfies this condition.

4.5 In accordance with FCC 10-37-4 the City shall have a 30-day review period starting the day following the final Certificate of Occupancy to evaluate and request adjustments to illumination levels based on staff inspections and public comments. The application shall be permitted to have decreased illumination levels onsite of 1-foot candles versus 2 required in FCC 10-37-4-B.

The applicant understands this lighting review period, to commence following the issuance of the final Certificate of Occupancy.

FCC 10-7:

5.1 The area has Yaquina soils which are known for high ground water. Therefore, the applicant shall record a Covenant of Release which outlines the hazard, restrictions and/or conditions that apply to the property as outlined in subsection (D) of FCC 10-7-7, Review and Use of Site Investigation Report, and limited to a determination that the project as described and conditioned herein meets the land use provisions and development standards of the City Code and Comprehensive Plan current as of this date. This approval makes no judgement or guarantee as to the functional or structural adequacy, suitability for purpose, safety, maintainability, or useful service life of the project." This shall be recorded prior to submittal of any building permit applications or prior to final Subdivision Plat.

The applicant understands this covenant must be filed prior to final subdivision plat.

FCC 10-10:

6.1 Based on FCC 10-2-13 definitions of front lot line, the front lot line for lots 23, 24, and 25 is considered the lot line adjacent to Oak St. Therefore, the maximum fence height along Oak St shall be 4 feet in height in accordance with FCC 10-34-5.

The applicant understands this information. No fence on Oak Street is proposed.

6.2 The applicant shall provide a minimum 5-foot rear yard setback for each individual lot in compliance with FCC 10-10-4-D.

Attachment 1 Sheet G1 Cover Sheet satisfies this condition. In addition, Attachment 3 Sheet S1 and S10 Side Elevation View depict the rear porch dimensions / protrusion.

6.3 The garage and driveway parking stalls shall be maintained as vehicular parking for the use of the single-family attached units and not be converted to another use.

The applicant understands this information.

6.4 The applicant shall either provide long term bike parking that meets criteria in accordance with FCC 10-3-10-C or the applicant shall provide other long term bicycle parking onsite in accordance with FCC 10-3-10, this required long-trem bicycle parking may either be located on individual sites or in common space. Long term bike parking will be verified prior to Cerificate of Occupancy of each unit if proivided on the individual lots, or with final PUD if provided in common or open space.

6.5 Long term bike parking may count towards recreation space requirements of Conditions 7.6 if provided in common or open space on the project site all criteria of FCC 10-3-10 shall be met including, but not limited to location and design, visibility and security, and lighting. If proposed, the long-term parking plan shall be submitted with to final PUD.

Long term bicycle parking to be located on individual lots; to be verified prior to Certificate of Occupancy of each unit.

FCC 10-23:

7.1. FCC 10-23-5-H-1 states high quality building design using Old Town and Mainstreet Architectural Standards or better. Different building facades and exterior design shall be used for each building grouping that meet the intent of FCC 10-6-6. This is to include but is not limited to a diversity of building materials and colors, window designs, garage door designs, roof eaves, light fixtures, driveway paving design/colors, and similar details etc. This shall be reviewed at final PUD.

See narrative below under FCC 10-6-6 on page 11.

7.2 The applicant shall submit a final grading plan illustrating all cuts and fills and final 1 ft. contours and grades to the edges of the development on all sides prior to final PUD.

Attachment 1 Sheet C6 Overall Site Grading Plan and Profile Views satisfies this condition.

7.3 With final PUD application a landscape and vegetation retention plan shall be submitted for the entire development. The buffer to the north shall include trees and shrubs planted or retained at a ratio of at least one tree per 30 ft. The Oak St. frontage and the 37th St. frontage adjacent to unit 25 shall include landscaping consisting of at least one tree for every 30 feet of frontage.

Attachment 3 Landscaping Plan satisfies this condition.

7.4 The corrections for utilities and accesses, as stated by SVFR Chief and Public Works, shall be addressed and provided in a revised utility and access plans submitted for review and approval with Final PUD submittal.

Attachment 1 Civil Plan satisfies this condition.

7.5 The final stormwater management plan shall be submitted for review and approval with Final PUD submittal. It shall include treatment and conveyance systems that meet city design typicals and it shall include consideration of capacity of existing system and an increase in detention pipe size as needed.

Attachment 4 Stormwater Management Report Supplemental Final Stormwater System Calculations satisfies this condition.

7.6 Open space shall be calculated using FCC 10-23-5-E criteria at 20% of the net development area and at least 25% of the 20% shall include area(s) designated and intended for recreation. As modifications are being requested to the development standards of the underlying zone, the recreation plan submitted at final PUD shall include more than the minimum required recreation area in accordance with FCC 10-23-5-H3 & 4. Due to the topographical constraints present on the site, exceeding minimum recreation requirements by may be provided through quality of amenities rather than increased square footage beyond minimum requirements, pending Planning Commission review and approval at final PUD.

7.7 A tentative concept plan with development amenities for the park area supporting both active and passive recreation shall be submitted with final PUD. Prior to issuance of the building permits for the fifth cluster of units the applicant shall submit and have approved a Final PUD approval for the proposed recreation area that is contained within the existing tax lots associated with this project.

Attachment 3 Landscaping Plan, including but not limited to Sheet L1 Vegetation Detail Open Space A and Vegetation Detail Open Space B and Attachment 1 Sheet G5 (proposed plat including these common areas) satisfy these conditions 7.6 and 7.7.

The applicant proposes (1) a cumulative 5,854 square feet of recreational open space, exceeding the required recreational open space requirement of 10-23-5-E by 20 square feet (or 0.3%) and (2) 38,754 square feet of open space, exceeding the recreational open space requirement of 10-23-5-E by 15,419 square feet (or 66%). This is in addition to the private back porches.

	Square Feet	% Net Dev't
TL 1200	136,284	
TL 200	9,016	
37th ROW	28,623	
Net Development Area (TL1200+TL200-ROW)	116,677	
Gross Development Area (TL1200+TL200)		
Required Open Space: 20% of Net Developable Area		
Required Recreational Space: 25% of 20% of Net Developable Area	5,834	
Proposed Open Space Area	38,754	33.2%
Proposed Recreational Open Space Area		5% (25% of Open Space Area)
Extras		
Private Back Porches	2,286	2%

The proposed recreational (and non-recreational) open spaces support both passive and active recreational uses. For example, they may be used for dog walking, walking, yoga. Note also that the HOA could choose to install additional amenities in these spaces, meeting their specific needs.

7.8 The applicant shall submit either an extension request or a Final PUD plan for the townhome development for review and approval within one year of Planning Commission approval of the Preliminary Plan (June 22, 2024). There are many land use regulation changes under consideration that if adopted may affect a request for extension.

FCC 10-35:

8.1 A traffic Impact Study (TIS) in accordance with FCC 10-35-2-5 and FCC 10-1-1-4-E is required based on the criteria that the proposed development will have 25 single family dwelling units and that adjacent neighborhoods or other areas may be adversely affected by the proposed development. A TIS shall be completed and submitted to the City for review and approval prior to, or in conjunction with final plat.

The applicant understands a traffic impact study is required to be completed and submitted to the City for review and approval prior to, or in conjunction with the final plat.

8.2 The maximum driveway width allowable under FCC 10-35-2-12-B for driveways serving single-family residences shall not be more than 24 feet shall be a minimum of 18 feet where the driveway provides two-way traffic. Therefore, the two driveway access points proposed on 37th St shall be a maximum of 24 feet in width and a minimum of 18 feet.

Attachment 1 Sheet C9 Access and Parking Plan satisfies this condition. The two driveway accesses are proposed to be 24' wide.

8.3 The east Myrtle Loop stub shall be built to local street standards.

Attachment 1 Sheet C11 Sidewalk Access Ramp Details satisfies this condition.

8.4 The applicant shall provide examples of signs to be installed at any and all fire access lanes or turnarounds in accordance with FCC 10-35-12-D section prior to issuance of building permits and all signs shall be installed and approved by public works prior to issuance of first Certificate of Occupany. This is intended for fire apperatus and street signage in public ROWs. Condition 4.4 addressed parking signage on private property.

Attachment 1 Sheet C12 Vehicle Turnaround Plan satisfies this condition.

8.5 Certificate of Occupancy for individual units shall not be issued until sidewalks are constructed on the north side of 37th St. and financially secured on the south side of 37th St.

The applicant understands the sidewalks on the north side of 37th Street must be constructed, and the sidewalks on the south side of 37th Street must be financially secured or constructed, prior to issuance of the first Certificaet of Occupancy.

8.6 Vision clearance at 37th and Oak Street shall be confirmed during building inspection or by staff site visit prior to final approval to ensure compliance with minimum vision clearance.

8.7 To meet the vision clearance areas criteria as identified in FCC 10-35-2-14, the HOA shall perpetually maintain landscaping so that vegetation does not grow to obstruct vision clearance areas at internal intersections or intersections with public streets in accordance with FCC 10-35-2-14. This shall be included in the CCRs.

The applicant understands the CCRs for the Myrtle Glenn PUD are required to include language which stipulates the HOA is responsible for complying with the following Florence City Code standard:

> 10-35-2-14: Vision Clearance: No visual obstruction (e.g., sign, structure, solid fence, or shrub vegetation) shall block the area between two and one-half feet (2 1/2') and eight (8) feet in height in "vision clearance areas" on streets, driveways, alleys, mid-block lanes, or multi-use paths where no traffic control stop sign or signal is provided, as shown in Figure 10-35(4). The following requirements shall apply in all zoning districts:

A. At the intersection of two (2) streets, minimum vision clearance shall be twenty feet (20').

B. At the intersection of an alley or driveway and a street, the minimum vision clearance shall be ten feet (10').

C. At the intersection of internal driveways, the minimum vision clearance shall be ten feet (10').

The sides of the minimum vision clearance triangle are the curb line or, where no curb exists, the edge of pavement. Vision clearance requirements may be modified by the Public Works Director upon finding that more or less sight distance is required (i.e., due to traffic speeds, roadway alignment, etc.). This standard does not apply to light standards, utility poles, trees trunks and similar objects. Refer to Section 10-2-13 of this Title for definition.

FCC 10-36:

9.1 All landscaping and stormwater facilities adjacent to sidewalks and pedestrian walkways shall be maintained by the HOA to prevent encroachment onto the sidewalks and bicycle areas and ground cover such as rocks or mulch shall be secured to prevent pedestrian hazards in consistency with the 2012 TSP.

The applicant understands the CCRs for the Myrtle Glenn PUD are required to include language which stipulates the HOA is responsible for maintaining the adjacent sidewalk and stormwater facilities (on-site, in 37th Street, and in the public utility easements).

9.2 Stormwater facilities in the ROW and PUEs shall be completed and approved by the Public Works Department or financially secured prior to issuance of any Certificates of Occupancies. Any damage caused by unmanaged stormwater prior to completion of the stormwater facilities will be the responsibility of the applicant or their representatives.

9.3 The proposed emergency vehicle turnaround easement meets current fire codes. However, this shall be a temporary solution and permanent emergency vehicle access shall be developed in conjunction with any development plans on the lot to the south at the expense of the developer of Myrtle Glenn or as agreed upon in writing and submitted to the City by both the Myrtle Glen developer and the developer of the southern property.

The applicant understands that, at the time the southern lot is developed, a "permanent emergency vehicle access" shall be developed. Permanent emergeny vehicle access means either: extension of W Myrtle Loop (complete or partial, as approved by the City), a cul-de-sac, or another design approved by the City. And that a deed restriction (or another legal instrument approved by the City) should be recorded stipulating such.

9.4 Barricades used for the East Myrtle Loop Street and 37th Street stubs shall be Type III barricades in accordance with FCC 10-36-2-9.

Attachment 1 Sheet G7 Standard Drawings and Details satisfies this condition.

9.6 Maintenance of the proposed sidewalks shall be the continuing obligation of the adjacent property owner, in the case of this subdivision the responsible party for maintaining these facilities shall be the HOA. In addition to maintaining the sidewalks adjacent to the development, the stormwater facilities, on-site, in the 37th St, or the PUEs shall be maintained by the Myrtle Glenn PUD and shall be stipulated in the CCRs.

The applicant understands the CCRs for the Myrtle Glenn PUD are required to include language which stipulates the HOA is responsible for maintaining the adjacent sidewalk and stormwater facilities (on-site, in 37th Street, and in the public utility easements).

9.7 In accordance with this FCC 10-36-2-21 the cost of signs required for new development shall be the responsibility of the developer and shall be installed as part of the street system development and shall be installed by developers per City of Florence Standards and Specifications. This shall apply to signs on public property and ROWS. Signage on private property shall be addressed during parking lot review under Condition 4.4.

Attachment 1 Sheets G8 Standard Drawings and Details and C9 Access and Parking Plan satisfy this condition.

9.8 Additional information for mailbox type and location shall be submitted and approved prior to issuance of Certificate of Occupancy with associated units.

The applicant understands that they are required to propose and gain approval for the type and location of mailbox(es) from both the City and USPS, prior to issuance of the Certificate of Occupancy for the associated units.

9.9 The building height shall be confirmed at time of building permit plan review and all shall be in compliance with all state and City fire and life safety codes.

9.10 The project involves disturbance of more than 1 acre of land. The applicant shall obtain an NPDES permit from DEQ prior to site disturbance.

The applicant understands that the DEQ requires a 1200C permit prior to disturbance of more than 1 acre.

9.11 All new utility lines shall be undergrounded, and above ground equipment shall not obstruct vision clearance areas for vehicular traffic.

The applicant's utility plans as presented in Attachment 1 Civil Plans satisfy this condition.

9.12 All public improvements shall be warranted against defects in materials and workmanship for a period of one year following acceptance of the improvements by the City. Once accepted, a minimum one (1) year warranty agreement on materials and workmanship shall be initiated between the City of Florence and the developer. A warranty bond or other financial security acceptable to the City in the amount of 12 percent of the original public improvement construction cost shall be maintained throughout the warranty period. The terms of the warranty and the warranty itself shall be provided to the Florence Planning Director prior to final plat approval.

The applicant understands, prior to final plat, they are required to provide a warranty bond or other financial security acceptable to the City in the amount of 12% of the construction cost of

all public improvements, to be held for one year after those improvements are accepted by the City (marked by the City's approval of the final plat).

FCC 10-37:

10.1 All lighting proposed on site to include the exterior of the individual units shall be designed as full cut-off fixtures or have shielding method to direct light downwards and do not glare onto adjacent properties or skyward in accordance with FCC 10-37-4. The required lighting plans for individual dwelling units shall be submitted to the planning department for review prior to issuance of building permit.

10.2 The applicant shall provide design, height, and photometric specification of the proposed street lights for review and approval by the Florence Planning Department and Public Work Department prior to any work being commenced and either prior to or in conjunction with final plat.

The applicant understands that lighting details (including design, height, and photometric specification of the proposed street lights) are required to be submitted to the Planning Department for approval prior to making the first application for a building permit.

FCC 11-3:

11.1 The final plat shall contain an Owner's Declaration recital, complete with the name and address of the property owner in accordance with FCC 11-3-2-C3 and the platting standards of ORS 92 for subdivisions.

11.2 The final plat prepared and submitted for final plat approval shall contain the elevations of all points used to determine contours with the required intervals of 1' 0% to 5'; 2' 5% to 10%; and 5' over 10%

The applicant understands the final plat must contain the details described above under 11.1 and 11.2.

11.3 All final engineering details and plans are subject to review, revision and approval by the Florence Community Department, Public Works Director and or City Engineer. The applicant shall submit all required sewage disposal, flood control, and drainage facility plans prior to final plat.

Attachment 1, which includes construction-ready engineering details and plans for review by the Florence Community Department, Public Works Director and or City Engineer, satisfies this condition.

The applicant understands that the City will require certain as-builts and operations and maintenance information post construction.

11.4 A final grading plan in required prior to final plat. The final grading plan is subject to discretionary approval by Public Works and/or Engineering.

Attachment 1 Sheet C6 Overall Grading Plan satisfies this condition.

11.5 The final plat that is prepared shall contain a legal description in accordance with ORS 92 11.6 The applicant will be expected to proceed with final survey and to make preparations for final subdivision approval within the timeframes outlined in Title 11 Chapter 3-6 & Chapter 4-4 & 4-6 unless otherwise provided for through approved and

allowed extensions from the Planning Director. This tentative plan shall expire on June 22, 2025 unless an extension request is received and approved

The applicant understands that their tentative subdivision plan approval will expire on June 22, 2025, and therefore they are required to construct or bond all proposed / approved public improvements and record the final plat prior to that date.

> 7.1. FCC 10-23-5-H-1 states high quality building design using Old Town and Mainstreet Architectural Standards or better. Different building facades and exterior design shall be used for each building grouping that meet the intent of FCC 10-6-6. This is to include but is not limited to a diversity of building materials and colors, window designs, garage door designs, roof eaves, light fixtures, driveway paving design/colors, and similar details etc. This shall be reviewed at final PUD.

FCC 10-23-H-1 applies because the applicant was granted certain modifications to desity, setbacks, and lot area. FCC 10-23-H-1 stipulates: "The project shall meet the development standards for the underlying zone including but not limited to height, density, coverage, setbacks, lot area. However, the applicant may propose modifications to those standards as part of the PUD application without the need for a separate variance or adjustment application subject to FCC 10-5. For all proposed modifications, the applicant shall submit application and show how the proposed modification achieves the following: "1. High quality building design using Old Town and Mainstreet Architectural Standards or higher standards"

Attachment 3, including but not limited to Sheets S9 and S10, combined with the narrative below under 10-6-6 satisfy Condition 7.1 because the proposed building design meets Old Town and Mainstreet Architectural Standards, and therefore the intent (and letter) of FCC 10-6-6.

Title 10: Chapter 6 Design Review: 10-6-6 Downtown Architectural Design

The Architectural Design criteria are designed to address and implement the Florence Downtown Architectural Guidelines. Where applicable, the following criteria consider the historical character of Florence through proper building massing, siting, and materials which reflect important aspects of Oregon's traditional Northwest architecture. The type of building to which this code may apply may differ by district. The following requirements are intended to create and maintain a built environment that is conducive to walking; reduces dependency on the automobile for short trips; provides natural surveillance of public spaces; creates a human-scale design, e.g., with buildings placed close to streets or other public ways and large building walls divided into smaller planes with detailing; and maintains the historic integrity of the community.

Development in the Old Town and Mainstreet districts shall comply with the standards in this section.

The City Planning Official, the City Planning Official's designee, or the Planning Commission may require any of the following conditions in order to establish a minimum level of design quality and compatibility between buildings. The Planning Commission may approve adjustments or variances to the standards as part of a site Design Review approval, pursuant with FCC 10-5 and 10-6, respectively. The applicant's proposed design meets the standards of 10-6-6, as described below, and therefore (a) is considered by Florence City Code to incorporate proper building massing, siting, and materials and (b) meets all of the conditions the Planning Commission may require in order to establish a minimum level of design quality and compatibility between buildings.

Title 10: Chapter 6 Design Review: 10-6-6-1 Building Type

These types of buildings currently exist within the applicable zoning districts and are compatible with each other, despite being different in their massing and form. The following building types are permitted in future development and infill. Other building types not listed which are compatible with the surrounding area and buildings and are compatible with the historic nature of the zoning district are also permitted. Not all types may be permitted or regulated in all zoning districts.

A. Residential Type, single-family, duplex (attached & detached), or multi-family

B. Commercial Storefront Type

C. Mixed-Use House Type

D. Community Building Type

Title 10: Chapter 6 Design Review: 10-6-6-2 Building Style

A. Context: Each building or addition shall be designed within the context of its larger surroundings and environment in terms of overall street massing, scale and configuration.

B. Historic Style Compatibility: New and existing building design shall be consistent with the regional and local historical traditions. Where historic ornament and detail is not feasible, historic compatibility shall be achieved through the relation of vertical proportions of historic façades, windows and doors, and the simple vertical massing of historical buildings. Some examples of architectural styles currently or historically present in the Florence area are: Queen Anne, Shingle Style, Second Empire, Victorian, Italianate, Tudor Style, Craftsman Bungalow, American Foursquare, and Vernacular.

1. Existing buildings: Maintain and restore significant historic details.

2. New Buildings: Design shall be compatible with adjacent historic buildings.

The proposed architectural style is Craftsman.

The proposed design is similar to neighboring single family, duplex, and small multifamily dwellings – one to two story, lap siding, 5:12 roof pitches.

Title 10: Chapter 6 Design Review: 10-6-6-3 Building Facades

A. Horizontal Design Elements: Multi-story commercial storefront buildings shall have a distinctive horizontal base; second floor; and eave, cornice and/or parapet line; creating visual interest and relief. Horizontal articulations shall be made with features such as awnings, overhanging eaves, symmetrical gable roofs, material changes, or applied facia detail. New buildings and exterior remodels shall generally follow the prominent horizontal lines existing on adjacent buildings at similar levels along the street frontage.

Examples of such horizontal lines include but are not limited to: the base below a series of storefront windows; an existing awning or canopy line, or belt course between building stories; and/or an existing cornice or parapet line. Where existing adjacent buildings do not meet the City's current building design standards, a new building may establish new horizontal lines.

The roof-lines / horizontal lines of the proposed structures generally follow the prominent horizontal lines existing on adjacent structures (majority single family dwellings). The first-level/garage-level roof lines follow the roof lines of adjacent 1-story structures and the second level roof lines follow the roof lines of adjacent 2-story structures.

B. Vertical Design Elements: Commercial storefront building faces shall have distinctive vertical lines of emphasis spaced at relatively even intervals. Vertical articulations may be made by material changes, variations in roof heights, applied facia, columns, bay windows, etc. The maximum spacing of vertical articulations on long, uninterrupted building elevations shall be not less than one break for every 30 to 40 feet.

The proposed spacing of street-facing verticle articulations exceed this standard (variation in roof height spaced every 14 to 20 feet).

C. Articulation and Detailing: All building elevations that orient to a street or civic space must have breaks in the wall plane (articulation) of not less than one break for every 30 feet of building length or width, as applicable, as follows:

The proposed spacing of street-facing building elevations exceed this standard (variation in roof height spaced every 14 to 20 feet).

1. Plans shall incorporate design features such as varying rooflines, offsets, balconies, projections (e.g., overhangs, porches, or similar features), recessed or covered entrances, window reveals, or similar elements that break up otherwise long, uninterrupted elevations. Such elements shall occur at a minimum interval of 30-40 feet. In addition, each floor shall contain at least two elements meeting the following criteria:

a. Recess (e.g., porch, courtyard, entrance balcony, or similar feature) that has a minimum depth of 4 feet;

b. Extension (e.g., floor area, porch, entrance, balcony, overhang, or similar feature) that projects a minimum of 2 feet and runs horizontally for a minimum length of 4 feet; and/or

c. Offsets or breaks in roof elevation of 2 feet or greater in height.

d. A "break," for the purposes of this subsection, is a change in wall plane of not less than 24 inches in depth. Breaks may include, but are not limited to, an offset, recess, window reveal, pilaster, frieze, pediment, cornice, parapet, gable, dormer, eave, coursing, canopy, awning, column, building base, balcony, permanent awning or canopy, marquee, or similar architectural feature.

Bottom Floor:

1) Offsets: in roof elevation of 2 feet or greater in height (garage roofs)

2) Extension: 22-23' foot deep, 14' wide garage extension every 14-20'

3) Recess: 3' foot deep, 9.5' wide front porch recess every 37.75 feet (center of each structure), on the first floor street-side.

4) Extension: garage roof overhang which projects 2' and runs horizontally for 14'.

5) Extension: approximately 13' wide terraces over two of the four garages on each structure (garages on the ends of each structure).

Top Floor:

1) Extension: dormer windows (with roofs) every ~ 10 ' (four per structure)

2) Extension: top roof overhang which projects 2' and runs horizontally for 75'.

The proposed design exceeds this design elements standard.

2. The Planning Commission, through Design Review, may approve detailing that does not meet the 24-inch break-in-wall-plan standard where it finds that proposed detailing is more consistent with the architecture of historically significant or historically-contributing buildings existing in the vicinity.

N/A

3. Changes in paint color and features that are not designed as permanent architectural elements, such as display cabinets, window boxes, retractable and similar mounted awnings or canopies, and other similar features, do not meet the 24-inch break-in-wall-plane standard.

N/A

4. Building elevations that do not orient to a street or civic space need not comply with the 24- inch break-in-wall-plan standard, but should complement the overall building design.

N/A

Title 10: Chapter 6 Design Review: 10-6-6-4 Permited Visible Building Materials

Building materials which have the same or better performance may be substituted for the materials below provided that they have the same appearance as the listed materials.

A. Exterior Building Walls:

1. Lap siding, board and batten siding, shingles and shakes. Metal siding and vinyl siding shall not be permitted.

2. Brick or stone masonry with a minimum 2 1/2" deep solid veneer material.

3. Cement-based stucco.

4. Secondary materials: Any of the materials listed above as permitted may also be used as secondary materials or accents. In addition, the materials listed above are allowed as secondary materials, trims, or accents (e.g., flashing, wainscoting, awnings, canopies, ornamentation) when non-reflective and compatible with the overall building design, subject to approval. Secondary materials may be used on up to 30% of the façade.

Lap siding (specifically Hardiplank lap siding) is proposed, which meets this exterior building wall standard.

B. Roofs, Awnings, Gutters, and Visible Roofing Components:

1. Composition shingles, concrete, slate or cedar shingles, or concrete or clay tiles. Red composition shingle similar to the Kyle Building are encouraged.

Composition shingles are proposed, meeting this roofing standard.

2. Standing seam roofing: copper, terne metal or coated metal.

N/A

3. Gutters and downspouts: copper, terne metal, or coated metal.

Galvanized steel with an acrillic coating (inside and out) with a rectancular downspout is proposed, meeting this gutter standard.

4. Single or multi-ply roofing, where visibly concealed.

Wood ply roofing layer proposed to be concealed by composition shingles.

5. Glass, steel, wood or canvas fabric awnings.

N/A

6. Skylights: metal and wood framed glass and translucent polymer.

N/A

C. Chimney Enclosures: Brick, cement-based stucco, stone masonry or wood shingles.

N/A

D. Windows, Entrances, and Accessories:

1. Wood, vinyl or pre-finished metal frames and sashes.

Vinyl windows, specifically Migard or equal, fixed picture and single-hung windows are proposed, meeting this window standard. See window schedule Attachment 2 Sheet S2.

2. Glazed and unglazed entry doors shall be wood, pre-finished or coated metal or fiberglass.

N/A

3. Solid wood or fiberglass shutters.

N/A

4. The use of decorative detailing and ornamentation around windows (e.g., corbels, medallions, pediments, or similar features) is encouraged.

E. Trellises, Decks, Stairs, Stoops, Porches, and Balconies

1. Architectural concrete, brick and stone masonry, solid wood or fiberglass columns, posts, piers and arches.

Solid wood posts are proposed, meeting this standard. See beam schedule Attachment 2 Sheet S2 Roof Plan.

2. Wood, brick, concrete and stone masonry decks, stoops, stairs, porches, and balconies.

Wood decks are proposed, meeting this standard.

3. Solid wood, painted welded steel or iron trellises.

N/A

4. Railings, balustrades, and related components shall be solid wood, painted welded steel or iron.

N/A

F. Landscape/Retaining Walls and Fences: Shall be subject to the FCC 10-34 and the following requirements:

[...]

N/A

G. Building and Site Material Colors: Color finishes on all building exteriors shall be approved by the City and be of a muted coastal Pacific Northwest palette. Reflective, luminescent, sparkling, primary, and "day-glow" colors and finishes are prohibited. The Planning Commission/Planning Commission or their designee may approve adjustments to the standards as part of a site Design Review approval.

Sherwin Williams, Benjamin Moore, or Rhodda paint is proposed. The proposed palete is green, brown, and tan, consistent with the Pacific Northwest palette.

<u>Title 10: Chapter 6 Design Review: 10-6-6-5 Material Applications and</u> <u>Configurations</u>

A. Building Walls:

1. For each building, there shall be one single, clearly dominant exterior wall material and finish.

Base paint color of each building proposed to be either tan, green or brown; trim proposed tan, green, or brown (brown with tan trim, green with brown trim, and so on). Garage doors proposed to be white.

2. Brick and stone front façades shall return at least 18" around side walls.

N/A

3. Building walls of more than one materials shall change along horizontal lines only, with a maximum of three materials permitted per façade.

N/A

4. Heavier materials, such as stone, shall only be used below lighter materials, such as siding.

N/A

5. Siding and shingles shall have a maximum 6" to the weather.

Shingles proposed to have less than 6" of each shingle exposed (aka "to the weather").

6. 4" minimum width corner, skirt, rake and eave trim shall run the full height of each façade, flush, or protrude beyond the surrounding wall surface.

A 6''x6'' Douglas Fir Larch post is proposed to run the full height of each corner of each structure, meeting this standard.

7. Board and batten siding: battens shall be spaced a maximum of 8" on center.

N/A

B. Roofs, Awnings, Gutters and Roofing Accessories:

1. Visibly sloped roofs shall pitch a minimum of 5:12 to a maximum 12:12 with symmetrical gable or hip configuration.

Roof pitches proposed 5:12 to 6:12, meeting this standard. (Dormers are 4:12.) See Attachment 2 Sheet S6.

2. Eaves shall be continuous except at sheds and dormers.

All proposed eaves are continuous except at dormers.

3. Shed roofs shall attach to the main building wall or roof ridge with minimum 3:1 slope.

N/A

4. Flat roofs shall be concealed by cornices or parapets.

N/A

5. Gutters shall be round or ogee profile. Leaders shall be round or square.

Gutters are proposed to be ogee profile; leaders proposed to be square.

6. All roof-mounted components such as mechanical equipment shall not be visible from street- level public rights-of-way.

N/A

7. Sloped roof eaves shall overhang exterior wall planes at least 12" and shall be visibly supported by exposed rafter ends or other compatible architectural detailing.

Sloped roof eaves proposed to overhang 1.5'-2' and are supported by visible wood beams. See Attachment 2 Sheet S6.

C. Towers:

[...]

N/A

D. Visible Windows, Glazing, and Entrances:

1. Windows shall be square and/or vertical rectangular shape with straight, bow, or arch tops.

Windows are proposed to be rectangular with straight tops and rectangular with arch tops (dormers), meeting this standard.

2. 10% of total windows maximum on the public façade may be circular, hexagonal, octagonal or other window configurations.

N/A

3. Bay windows shall have visible bracket support.

N/A

4. Overhead doors shall not face the building's primary street façade or a major public right-of- way.

The proposed garage doors are technically front-facing overhead doors. However, Florence City Code prefers street-facing garages, and garage doors are generally overhead doors. Therefore, in this case, the garage doors should be permitted to face the primary street. Also, as described above, the garages include several design features desired by 10-6-6, including: windows, roof elevation breaks, terraces.

5. Door and window shutters shall be sized to cover the entire window.

N/A

6. Exterior shutters shall be solid wood or fiberglass.

N/A

7. No single lite or glass panel visible from the street shall be greater than 24 square feet in area except in storefront glazing systems.

N/A

8. Multiple vertical windows may be grouped in the same horizontal opening provided they are separated by 4" minimum width vertical trim.

N/A

9. Windows and doors in exterior walls shall be surrounded with 2 1/2" minimum width trim applied flush or projecting beyond the finished wall surface.

All trim (window and door) proposed to be a minimum 3" width.

10. Profiles of window mullions shall extend out beyond the exterior glass surface. Windows shall have muntins which create True Divided Lights or a similar simulated appearance.

No mullions are proposed. Picture and single-hung windows proposed. See Attachment 2 Sheet S2 for window schedule.

E. Visible Decks and Balconies: All balconies and decks attached to building faces, whether cantilevered or supported below or above, shall be visibly supported by vertical and horizontal elements such as brackets, columns, or beams. Exterior posts and columns, solid or encased, shall be minimum 5 1/2" in cross-section.

Balconies and decks are attached to the rear of the building. Regardless, they are supported by verticle and horizontal wooden beams. See beam schedule on Attachment 2 Sheet S5.

F. Visible Landscape/Retaining Walls and Fences:

[...]

N/A

G. Mechanical Equipment:

[...]

N/A

Final Development Plan Standards

<u>Title 10: Chapter 23: Planned Unit Development (PUD): 10-23-11: Approval of the Final Development Plan</u>

1. Within one year following the approval of the preliminary development plan, the applicant shall file with the Planning Commission a final development plan containing in final form the information required in the preliminary plan. The Planning Commission may grant a one- time extension of one (1) year maximum duration based on compliance with the following criteria:

[...]

Preliminary subdivision and prelimnary PUD approval was granted June 26, 2023. This final PUD application is filed August 29, 2023.

2. Final development plans shall include plans for proposed:

- a. Storm drainage.
- b. Sewer and water utilities.
- c. Streets, pedestrian ways, trails and paths.
- d. Preliminary subdivision plan, if property is proposed to be divided.

e. Open Space and Parklands to be dedicated to the public or held in Homeowner Association ownership. (Ord. No. 2, Series 2011)

3. Plans for public improvements shall be prepared by a Registered Engineer and shall be approved by City staff before final approval by the Planning Commission.

4. If the Planning Commission finds evidence of a material deviation from the preliminary development plan, the Planning Commission shall advise the applicant to submit an application for amendment of the planned unit development. An amendment shall be considered in the same manner as an original application.

See Attachments 1 for final development plans, prepared by Clinton Beecroft, PE. And Attachment 2 and 3 for final architectural and landscaping plans.

ATTACHMENT 1

Civil Plans

Myrtle Glenn Subdivision Final PUD Application to City of Florence August 29, 2023

CEENERAL VALUE NOTES ELEMente in un control and a sector a conserver to unusual ELEMente interestinguistication and an element in the automatication of the analysis of the automatication ELEMente interestinguistication and automatication and automatication Elemente interestinguistication Elemente interestinguistication automatication and automatication Elemente interestinguistication Elemente interestinguistication and automatication and automatication Elemente interestinguistication Elemente interestinguistication automatication and automatication and automatication Elemente interestinguistication Elemente interestinguistication automatication automatication automatication Elemente interestinguistication Elemente interestinguistication automatication automatication automatication Elemente interestinguistication Elemente interestinguistinterestinguistication Elemente inter	 1 ADMAGENT 1 ADMAGENTIAL DATA OF THE OPERATION O	 CIEVERAL NOTES Personante da la casa de la construit y et utabas e facto de la construit de
		CENCERAL WATER NOTES 1 Notati per sublicity of a local base for a local base for a way, one and the local base for a way, one and the local base for a local base for a local base for a local base for an and the local base for
N.E.D. N.E.D. N.E.D. N.E.D. N.E.D. 10. C.C.M.20000000000 1 0.0000000000 1 0.0000000000 1 0.00000000000 1 0.00000000000 1 0.00000000000 0.0000000000000000 0.00000000000000000000000000000000000	STANDARD ABBREVIATIONS: NOT ALL ABBREVIATIONS ARE USED ************************************	TTPICAL STREET SECTION
G2	Description of Revisions Date Name MYRT FINAL PUD IM LEGEND NOTES ANI FLOR	TLE GLENN PUD MPROVEMENT DRAWINGS D. ABBREVIATIONS, ND TYPICAL SECTIONS RENCE, OREGON

[12] Statistics and C. Statistics in the second statistics of the second statistics in the second statistics of the se

Architectural Plans

Myrtle Glenn Subdivision Final PUD Application to City of Florence August 29, 2023

<complex-block><complex-block></complex-block></complex-block>	Distantion of inclusion of the second	MARTLE GLEN PURCH TOWNHOUSE FLOOR PLANS TAX MAR: 18-15-25-11 TO 1000, 1000, 1000 POS MILLIAM JOHNSON CONSTRUCTION, 1NC, POS POS POS POS POS PLOOR PLANS PLOOR PLOO	анки житт глим мили 100 года 2000 года 2

Landscaping Plans

Myrtle Glenn Subdivision Final PUD Application to City of Florence August 29, 2023

ATTACHMENT 4

Stormwater Calculations

Myrtle Glenn Subdivision Final PUD Application to City of Florence August 29, 2023

EGR & Associates, Inc.

2535B Prairie Road Eugene, Oregon 97402 (541) 688-8322 Fax (541) 688-8087

Stormwater Management Report Supplemental

Final Stormwater System Calculations

Myrtle Glenn PUD

Map 18-12-22-11 Tax Lots 200, 1100, and 1200

Florence, Oregon

August 1, 2023

Applicant

William Johnson Construction, Inc.

Florence, OR 97439 Engineer/Surveyor

EGR & Associates, Inc. 2535B Prairie Road Eugene, Oregon 97402 This page intentionally left blank.

LAYOUT=Flgure 2 Aug 02, 2023

2-0187 37th

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene					
	Version 2.1					
Project Information						
Project Name:	Myrtle Glenn PUD			Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		F	Permit Number:	NA	
	Florence, OR		(Catchment ID:	<u>1A</u>	
Designer:	Clint Beecroft					
Company:	EGR & Associates					
Instructions:						
1. Complete this form for	each drainage catc	nment in the project site t	that is to be sized	per the Presump	ptive Approach.	
2. Provide a distinctive C calculations with the fa	atchment ID for eac icility.	ו facility coordinated with	n the site basin ma	ap to correlate the	e appropriate	
3. The maximum drainag	e catchment to be n	nodeled per the Presump	otive Approach is ²	l acre (43,560 SI	F)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ting has been perf	romed use an in	filtration rate of 0).5 in/hr.
For all facilities use a r	maximum soil infiltra	tion rate of 2.5 in/hr for to	opsoil/growing me	dium.		
Design Requirements:						
Choose "Yes" from the d	ropdown boxes belo	w next to the design stan	ndards requiremer	ts for this facility	<i>ı</i> .	
Pollution Reduction	on (PR) Yes	1				
Flow Cont						
Destinati	on (DT) Ves	*An infiltration facility must be	abasan as the facility t	una ta maat daatinati	ion roquiromonto	
Destinati		An initiation facility must be	chosen as the facility i	ype to meet destination	onrequirements	
Site Data-Post Develop	ment					
Tatal Owners Franks		4070	Tatal Or			
I otal Square Footag	e Impervious Area	1976 sqft	lotal Sq	uare Footage P	ervious Area=	
In	ipervious Area CN-	98		Pervi	ious Area CN=	CO
Total Square Footage Wei	e of Drainage Area ghted Average CN	: 1976 sft - 98	Time of Conc	entration Post I	Development=	7 min
Site Data-Pre Developm	ent (Data in t	his section is only used	t if Flow Control	is required)		
one Data-i re Developii		ils section is only used		is required)		
Pre	-Development CN	: <u>73</u>	Time of Con	centration Pre-I	Development=	5 min
Soil Data						
Tested So	oil Infiltration Rate	= 10 in/hr (See No	ote 4)	Destin	ation Design=	4 in/hr
Design So	oil Infiltration Rate	: 4 in/hr		Soil In	filtration Rate	
Desian Storms Used Fo	or Calculations					
De multiment de	Dela fell Death	Desire Oteres				
Requirement	Rainfall Depth	Design Storm				
Pollution Reduction		Vater Quality				
	5.1 Inches	Flood Control				
Destination	5.1 Inches	Flood Control				
Facility Data						
	Facility Type=	Infiltration Stormwate	r Planter	Facility	Surface Area=	258 sqft
	Surface Width=	: 6 ft		Facility Surfa	ce Perimeter=	98 ft
	Surface Length	: 43 ft		Facility	Bottom Area=	78 sqft
Fa	acility Side Slopes	: 4 to 1		Facility Botto	om Perimeter=	82 ft
Max. I	Ponding Depth				Γ.,Γ	
in Stori	nwater Facility=	6 in	D-41 (5	B	asin Volume=	88.0 ct
Depth of Growing Medium (Soil)= 18 in Ratio of Facility Area to Impervious Area= 0.131						

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.00	8 cfs Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 10	I3 cf Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 0.	0 in			
Drawdown Time= 0.	2 hours			
Yes Facility Sizing Meets Po	Ilution Reduction Standards?			
YES Meets Requirement YES Meets Requirement	of No Facility Flooding? for Maximum of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.05	6 cfs Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 79	2 cf Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 5.	9 in Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.	2 hours			
Pre-Development Runoff Data Peak Flow Rate = 0.026 cfs Total Runoff Volume = 383 cf Yes Facility Sizing Meets Flow Control Standards?				
YES Meets Requirement for Maximum of 18 Hour Drawdown Time?				
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.05	6 cfs Peak Facility Overflow Rate=0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = /9	2 cf I otal Overflow Volume= 0 cf			
Drawdown Time=	9 III 2 bours			
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Facility Flooding? YES Meets Requirement for Maximum of 30 hour Drawdown Time?				

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date	: <mark>7/25/2023</mark>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number	: <mark>NA</mark>
	Florence, OR		Catchment ID:	<u>1B</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1 Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Presum	uptive Approach
 Provide a distinctive C calculations with the fa 	atchment ID for each	facility coordinated with	the site basin map to correlate th	he appropriate
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,560 S	SF)
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ng has been perfromed use an i	filtration rate of 0.5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	psoil/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this facilit	у.
Pollution Poducti		1		
Fonution Reduction				
Flow Contin				
Destinati	on (DT) Yes	*An infiltration facility must be	chosen as the facility type to meet destina	tion requirements
Site Data Best Dovelop	mont			
One Data-i Ost Develop	ment			
Total Square Footag	e Impervious Area=	8725 sqft	Total Square Footage I	Pervious Area= 0 sqft
Im	pervious Area CN=	98	Perv	rious Area CN= <u>85</u>
Total Square Footage	e of Drainage Area=	8725 sft	Time of Concentration Post	Development= 10 min
	ginea Average on-			
Site Data-Pre Developm	ient (Data in th	is section is only used	if Flow Control is required)	
Pre-Development CN= 73 Time of Concentration Pre-Development= 5 min				
Soil Data				
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4) Destin	nation Design=4 in/hr
Design So	Dir Innitration Rate-	4 111/11	3011	militration Rate
Design Storms Used Fo	or Calculations			
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
	Eacility Type=	Infiltration Stormwate	r Plantor Facility	Surface Area= 1152 soft
	Surface Width-	6 ft	Facility Surf	ace Perimeter= 306 ft
	Surface Length=	192 ft	Facility	Bottom Area= 376 soft
F	acility Side Slopes=	4 to 1	Facility Bott	om Perimeter= 380 ft
Max.	Ponding Depth			
in Stor	mwater Facility=	6 in	I	Basin Volume= 386.0 cf
Depth of Grow	Depth of Growing Medium (Soil)= 18 in Ratio of Facility Area to Impervious Area= 0.132			

Pollution Reduction-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.033 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 454 cf	Total Overflow Volume= 0 cf		
Max. Depth of Stormwater in Facility= 0.0 in			
Drawdown Time= 0.2 hours			
Yes Facility Sizing Meets Pollution Red	uction Standards?		
YES Meets Requirement of No Facility	/ Flooding?		
YES Meets Requirement for Maximum	of 18 Hour Drawdown Time?		
Flow Control-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.239 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 3492 cf	Total Overflow Volume= 0 cf		
	Peak Off-Site Flow Rate		
Max. Depth of Stormwater in Facility= 5.7 in	Filtration Facility Underdrain= N\A cfs		
Drawdown Time= 0.2 hours			
Pre-Development Runoff Data			
Peak Flow Rate = 0.113 cfs			
Total Runoff Volume = 1692 cf			
Yes Facility Sizing Meets Flow Control	Standards?		
YES Meets Requirement for Post Development offsite flow less or equal to Pre-Development Flow? YES Meets Requirement for Maximum of 18 Hour Drawdown Time?			
Destination-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.239 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 3492 cf	Total Overflow Volume= 0 cf		
Max. Depth of Stormwater in Facility= 5.7 in			
Yes Facility Sizing Meets Destination Standards?			
YES Meets Requirement of No Facility Flooding?			
YES Meets Requirement for Maximum of 30 hour Drawdown Time?			

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	NA	
	Florence, OR		Catchment ID:	<u>1B-1</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	each drainage catch	ment in the project site that is	to be sized per the Presum	ptive Approach.	
2. Provide a distinctive C	atchment ID for each	facility coordinated with the s	te basin map to correlate th	e appropriate	
	acility.				
3. The maximum drainag	e catchment to be m	odeled per the Presumptive A	oproach is 1 acre (43,560 Si		
4.For infiltration facilities	In Class A or B soils	where no infiltration testing ha	s been perfromed use an in	filtration rate of 0.5 in/hr.	
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for topsoil/	growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes belov	v next to the design standards	requirements for this facility	Ι.	
Pollution Reduction		l			
	rol (FC) Yes				
Destinati	on (DT) Yes	*An infiltration facility must be chosen	as the facility type to meet destinati	ion requirements	
Site Data-Post Develop	ment				
Total Square Footag	e Impervious Area=	3762 sqft	Total Square Footage P	ervious Area=0 sqft	
Im	pervious Area CN=	98	Pervi	ious Area CN= 85	
	•				
Total Square Footage	e of Drainage Area=	3762 sft Tin	ne of Concentration Post I	Development= 10 min	
. Vei	ahted Average CN=	98		·	
Sito Data Pro Dovolonn	ont (Data in th	is section is only used if Ele	w Control is required)		
one Data-i re Developii	Site Data-Pre Development (Data in this section is only used if Flow Control is required)				
Pre-Development CN= 73 Time of Concentration Pre-Development= 5 min					
Soil Data					
Tested Se	oil Infiltration Rate=	10 in/hr (See Note 4)	Destin	ation Design= 4 in/hr	
Design Se	oil Infiltration Rate=	4 in/hr	Soil In	filtration Rate	
Docian Storms Used E	or Calculations				
Design otomis oscu i e					
Requirement	Rainfall Depth	Design Storm			
Pollution Reduction	0.8 inches	Water Quality			
Flow Control	5.1 inches	Flood Control			
Destination	5.1 inches	Flood Control			
Facility Data					
	Escility Type=	Infiltration Stormwater Blan	tor Escility	Surface Area 480 caft	
	Surface Width-	6 ft	Equility Equility	co Porimotor 170 ft	
	Surface Width=		Facility Surta	Pottom Aroan 150 ant	
-	Surrace Length=			Bortimeter 152 sqit	
Fa	acility Side Slopes=	4 to 1	Facility Botto	om Perimeter= 156 ft	
Wax.	Ponding Depth	Gin	-	lagin Volume-	
in Stor	inwater Facility=	0 III	В	asin volume- 162.0 ci	
Denth of C	data Madiser (0 - 10	40	Ale of Feellin Arrents 1	amilaua Anaa	

Pollution Reduction-Calculation Results						
Peak Flow Rate to Stormwater Facility = 0.014 cfs	Peak Facility Overflow Rate= 0.000 cfs					
Total Runoff Volume to Stormwater						
Facility = 196 cf	Total Overflow Volume= 0 cf					
Max. Depth of Stormwater in Facility= 0.0 in						
Drawdown Time= 0.2 hou	Irs					
Yes Facility Sizing Meets Pollutio	on Reduction Standards?					
YES Meets Requirement of No	Facility Flooding?					
YES Meets Requirement for M	aximum of 18 Hour Drawdown Time?					
Flow Control-Calculation Results						
Peak Flow Rate to Stormwater Facility = 0.103 cfs	Peak Facility Overflow Rate= 0.000 cfs					
Total Runoff Volume to Stormwater						
Facility = 1506 cf	Total Overflow Volume=0 cf					
	Peak Off-Site Flow Rate					
Max. Depth of Stormwater in Facility= 5.9 in	Filtration Facility Underdrain= N\A cfs					
Drawdown Time= 0.2 hou	Irs					
Pre-Development Runoff Data						
Yes Facility Sizing Meets Flow C	ontrol Standards?					
YES Meets Requirement for Post Development offsite flow less or equal to Pre-Development Flow? YES Meets Requirement for Maximum of 18 Hour Drawdown Time?						
Destination-Calculation Results						
Peak Flow Rate to Stormwater Facility = 0.103 cfs	Peak Facility Overflow Rate= 0.000 cfs					
Total Runoff Volume to Stormwater						
Facility = 1506 cf	Total Overflow Volume=0 cf					
Max. Depth of Stormwater in Facility= 5.9 in						
Drawdown Time= 0.2 hou	irs					
Yes Facility Sizing Meets Destination Standards?						
YES Meets Requirement of No Facility Flooding?						
YES Meets Requirement for Maximum of 30 hour Drawdown Time?						
EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene					
--	---	--------------------------------	-----------------------	--------------------------	----------------------	--------------------
	Version 2.1					
Project Information						
Project Name:	Myrtle Glenn PUD			Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>			Permit Number:	<u>NA</u>	
	Florence, OR			Catchment ID:	<u>1B-2</u>	
Designer:	Clint Beecroft					
Company:	EGR & Associates					
Instructions:						
1. Complete this form for	each drainage catch	ment in the project site t	that is to be size	d per the Presum	ptive Approach.	
2. Provide a distinctive C calculations with the fa	atchment ID for each acility.	facility coordinated with	the site basin r	nap to correlate th	e appropriate	
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is	1 acre (43,560 SI	F)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ing has been pe	rfromed use an in	filtration rate of (0.5 in/hr.
For all facilities use a	maximum soil infiltrat	on rate of 2.5 in/hr for to	opsoil/growing n	iedium.		
Design Requirements:						
Choose "Yes" from the d	ropdown boxes belov	/ next to the design stan	dards requirem	ents for this facility	<i>ı</i> .	
Pollution Reducti	on (PR) Yes					
Flow Cont						
Doctinati	on (DT) Vos	*		. 4		
Destinati		An initiation facility must be	chosen as the facilit	y type to meet destinati	ion requirements	
Site Data-Post Develop	ment					
					r	
Total Square Footag	e Impervious Area=	2515 sqft	Total S	quare Footage P	ervious Area=	0 sqft
In	pervious Area CN=	98		Pervi	ious Area CN=	85
Total Square Footag	of Drainago Aroa-	2515 off	Time of Cor	contration Boot		10 min
Total Square Footage	e of Drainage Area-	2515 SIL	Time of Cor	centration Post i	Development-	
Wei	gilled Average CN-	90				
Site Data-Pre Developn	nent (Data in th	is section is only used	I if Flow Contro	l is required)		
Pre	e-Development CN=	73	Time of Co	ncentration Pre-I	Development=	<mark>5</mark> min
Soil Data						
Tested S	oil Infiltration Rate=	10 in/hr (See No	ote 4)	Destin	ation Design=	4 in/hr
Design S	oil Infiltration Rate=	4 in/hr		Soil In	filtration Rate	
Design Storms Used Fo	or Calculations					
Requirement	Painfall Denth	Design Storm				
Pollution Reduction		Water Quality				
Flow Control	5.1 inches	Flood Control				
Destination	5.1 inches	Flood Control				
Essility Data	1					
	Facility Type=	Infiltration Stormwate	r Planter	Facility	Surface Area=	452.4 sqft
	Surface Width=	6 ft		Facility Surfa	ce Perimeter=	162.8 ft
-	Surrace Length=	/5.4 ft		Facility	Bottom Area=	143 sqft
Fi May	acility Side Slopes=	4 IO 1		Facility Botto	om Perimeter=	147 11
in Stor	mwater Facility=	6 in		R	asin Volume=	152.8 cf
Depth of Grow	/ing Medium (Soil)=	18 in	Ratio of Fa	cility Area to Imp	ervious Area=	0.180
2004101010						0.100

Pollution Reduction-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.009 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 131 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 0.0 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Pollution Reduction Standards?							
YES Meets Requirement of No Facili	ity Flooding?						
YES Meets Requirement for Maximu	m of 18 Hour Drawdown Time?						
Flow Control-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.069 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1007 cf	Total Overflow Volume= 0 cf						
	Peak Off-Site Flow Rate						
Max. Depth of Stormwater in Facility= 4.0 in	Filtration Facility Underdrain= N\A cfs						
Drawdown Time= 0.2 hours							
Pre-Development Runoff Data							
Peak Flow Rate = 0.033 cfs							
i otal Runoff Volume = 488 cf							
Yes Facility Sizing Meets Flow Contro	I Standards?						
YES Meets Requirement for Post De YES Meets Requirement for Maximu	velopment offsite flow less or equal to Pre-Development Flow? m of 18 Hour Drawdown Time?						
Destination-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.069 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1007 cf	Total Overflow Volume=0 cf						
Max. Depth of Stormwater in Facility= 4.0 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Destination	Standards?						
YES Meets Requirement of No Facili	ity Floodina?						
YES Meets Requirement for Maximu	m of 30 hour Drawdown Time?						

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene					
	Version 2.1					
Project Information						
Project Name:	Myrtle Glenn PUD			Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>			Permit Number:	<u>NA</u>	
	Florence, OR			Catchment ID:	<u>1B-3</u>	
Designer:	Clint Beecroft					
Company:	EGR & Associates					
Instructions:						
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be size	ed per the Presum	ptive Approach.	
2. Provide a distinctive C	atchment ID for each	facility coordinated with	the site basin	nap to correlate th	e appropriate	
calculations with the fa	acility.					
3. The maximum drainag	e catchment to be m	odeled per the Presumpt	tive Approach i	s 1 acre (43,560 Sl	F)	
4.For infiltration facilities	in Class A or B soils	where no infiltration testi	ing has been pe	erfromed use an in	filtration rate of	0.5 in/hr.
For all facilities use a	maximum soil infiltrat	on rate of 2.5 in/hr for to	psoil/growing n	nedium.		
Design Requirements:						
Choose "Yes" from the d	ropdown boxes belov	r next to the design stand	dards requirem	ents for this facility	<i>ı</i> .	
Pollution Reducti	on (PR) Yes					
Flow Cont						
Doctinati	on (DT) Yes	**				
Destinati	on (DT) Tes	*An infiltration facility must be o	chosen as the facili	y type to meet destinati	ion requirements	
Site Data-Post Develop	ment					
		0.1.10				
Total Square Footag	e Impervious Area=	2448 sqft	lotal	Square Footage P	ervious Area=	0 sqft
In	pervious Area CN=	98		Pervi	ous Area CN=	85
Total Square Ecotag	of Drainago Aroa-	2448 off	Time of Cou	contration Post	Dovelopment-	10 min
Voi	abted Average CN=	08	Time of Col	ICENTIATION POST	Development-	
	gilled Average Olt-					
Site Data-Pre Developh	ient (Data in tr	is section is only used	IT FIOW CONTR	oi is requirea)	-	
Pre	-Development CN=	73	Time of Co	oncentration Pre-I	Development=	<mark>5</mark> min
Soil Data						
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4)	Destin	ation Design=	4 in/hr
Design S	oil Infiltration Rate=	4 in/hr		Soil In	filtration Rate	
Design Storms Used Fo	or Calculations					
Requirement	Rainfall Depth	Design Storm				
Pollution Reduction	0.8 inches	Water Quality				
Flow Control	5.1 inches	Flood Control				
Destination	5.1 inches	Flood Control				
Facility Data	· ·					
r donity Data		Infiltration Starmwater	r Diantar	Facility		452.4 ooft
	Facility Type=	6 ft	Flanter	Facility Surfa	co Porimotor-	162.8 ft
	Surface Length-	75.4 ft		r achity Suffa Facility	Bottom Area-	143 soft
	-acility Side Slonce	4 to 1		Facility Botto	m Perimeter	147 ft
Мах	Ponding Depth			i admity botto	i cimietei -	147
in Stor	mwater Facility=	6 in		В	asin Volume=	152.8 cf
Depth of Grow	/ing Medium (Soil)=	18 in	Ratio of Fa	cility Area to Imp	ervious Area=	0.185
	. ,			-		

Pollution Reduction-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.009 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 127 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 0.0 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Pollution Reduction Standards?							
YES Meets Requirement of No Facility	Flooding?						
YES Meets Requirement for Maximum	of 18 Hour Drawdown Time?						
Flow Control-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.067 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 980 cf	Total Overflow Volume= 0 cf						
	Peak Off-Site Flow Rate						
Max. Depth of Stormwater in Facility= 3.9 in	Filtration Facility Underdrain= N\A cfs						
Drawdown Time= 0.2 hours							
Pre-Development Runom Data							
Total Runoff Volume = 475 cf							
Yes Facility Sizing Meets Flow Control	Standards?						
YES Meets Requirement for Post Deve YES Meets Requirement for Maximum	elopment offsite flow less or equal to Pre-Development Flow? of 18 Hour Drawdown Time?						
Destination-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.067 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility =980 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 3.9 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Destination St	tandards?						
YES Meets Requirement of No Facility	Flooding?						
YES Meets Requirement for Maximum	of 30 hour Drawdown Time?						

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene					
	Version 2.1					
Project Information						
Project Name:	Myrtle Glenn PUD			Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>			Permit Number:	<u>NA</u>	
	Florence, OR			Catchment ID:	<u>1C</u>	
Designer:	Clint Beecroft					
Company:	EGR & Associates					
Instructions:						
1. Complete this form for	r each drainage catch	ment in the project site f	that is to be size	d per the Presum	ptive Approach.	
2. Provide a distinctive C	atchment ID for each	facility coordinated with	n the site basin n	nap to correlate th	e appropriate	
calculations with the fa	acility.					
3. The maximum drainag	ge catchment to be m	odeled per the Presump	otive Approach is	1 acre (43,560 SI	F)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ting has been pe	rfromed use an in	filtration rate of 0	.5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	opsoil/growing m	edium.		
Design Requirements:						
Choose "Yes" from the d	lropdown boxes below	v next to the design stan	ndards requireme	ents for this facility	<i>I</i> .	
Pollution Reducti						
Flow Cont						
Flow Cont						
Destinati	on (DT) Tes	*An infiltration facility must be	chosen as the facility	r type to meet destinati	ion requirements	
Site Data-Post Develop	ment					
					F	
Total Square Footag	e Impervious Area=	3834 sqft	Total S	quare Footage P	ervious Area=	Usqft
In	npervious Area CN=	98		Pervi	ious Area CN=	85
Total Square Footag	e of Drainage Area=	3834 sft	Time of Con	centration Post I	Development=	10 min
vve	gilled Average CN-	90				
Site Data-Pre Developn	nent (Data in th	is section is only used	d if Flow Contro	l is required)		
Pro	e-Development CN=	73	Time of Co	ncentration Pre-I	Development=	5 min
Soil Data						
Tested S	oil Infiltration Rate=	10 in/hr (See No	ote 4)	Destin	ation Design=	4 in/hr
Design S	oil Infiltration Rate=	4 in/hr		Soil In	filtration Rate	
Design Storms Used Fo	or Calculations					
Requirement	Rainfall Depth	Design Storm]			
Pollution Reduction	0.8 inches	Water Quality				
Flow Control	5.1 inches	Flood Control				
Destination	5.1 inches	Flood Control				
Facility Data			- 			
	Eacility Type=	Infiltration Stormwate	r Plantor	Facility	Surface Area=	504 saft
	Surface Width=	6 ft	a i lantei	Facility Surfa	co Porimotor-	180 ft
	Surface Length=	84 ft		Facility	Bottom Area=	160 saft
F	acility Side Slonee=	4 to 1		Facility Botto	m Perimeter=	164 ft
Мах	Pondina Denth			T donity Dotte		
in Stor	mwater Facility=	6 in		В	asin Volume=	170.0 cf
Depth of Grov	ving Medium (Soil)=	18 in	Ratio of Fa	cility Area to Imp	ervious Area=	0.131
	,		-	- F		

Pollution Reduction-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.014 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 199 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 0.0 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Pollution Reduction Standards?							
YES Meets Requirement of No Facility Floo	oding?						
YES Meets Requirement for Maximum of 18	3 Hour Drawdown Time?						
Flow Control-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.105 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1535 cf	Total Overflow Volume= 0 cf						
	Peak Off-Site Flow Rate						
Max. Depth of Stormwater in Facility= 5.7 in	Filtration Facility Underdrain= N\A cfs						
Drawdown Time= 0.2 hours							
Pre-Development Runoff Data							
Peak Flow Rate = 0.050 cfs							
Total Runoff Volume = 744 cf							
Yes Facility Sizing Meets Flow Control Stan	dards?						
YES Meets Requirement for Post Developm YES Meets Requirement for Maximum of 18	nent offsite flow less or equal to Pre-Development Flow? 3 Hour Drawdown Time?						
Destination-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.105 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1535 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 5.7 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Destination Stand	ards?						
YES Meets Requirement of No Facility Floo	dina?						
YES Meets Requirement for Maximum of 30) hour Drawdown Time?						

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene						
Project Information							
Project Name:	Myrtle Glen Subdiv	ision	Dat	te: 7/25/2023			
Project Address:	18-12-22-11-01200		Permit Numbe	er: NA			
	Florence, OR		Catchment ID	: <u>1D</u>			
Designer:	Clint Beecroft						
Company:	EGR & Associates						
Instructions:							
 Complete this form for each drainage catchment in the project site that is to be sized per the Presumptive Approach. Provide a distinctive Catchment ID for each facility coordinated with the site basin map to correlate the appropriate calculations with the facility. The maximum drainage catchment to be modeled per the Presumptive Approach is 1 acre (43,560 SF) For infiltration facilities in Class A or B soils where no infiltration testing has been perfromed use an infiltration rate of 0.5 in/hr. 							
Design Requirements:							
Choose "Yes" from the d	ropdown boxes belov	v next to the design stand	ards requirements for this faci	ility.			
Pollution Reduction Flow Contro Destination	on (PR) Yes rol (FC) Yes on (DT) Yes	*An infiltration facility must be cf	osen as the facility type to meet desti	nation requirements			
Site Data-Post Develop	ment						
Total Square Footag Im	Total Square Footage Impervious Area= 4745 sqft Total Square Footage Pervious Area= 0 sqft Impervious Area CN= 98 Pervious Area CN= 85						
Total Square Footage Wei	e of Drainage Area= ghted Average CN=	4745 sft 98	Time of Concentration Pos	st Development= 10 min			
Site Data-Pre Developm	ent (Data in th	is section is only used i	f Flow Control is required)				
Pre	-Development CN=	73	Time of Concentration Pr	e-Development=5 min			
Soil Data							
Tested So Design So	bil Infiltration Rate= bil Infiltration Rate=	10 in/hr (See Note 4 in/hr	4) Des Soil	tination Design=4 in/hr I Infiltration Rate			
Design Storms Used Fo	or Calculations						
Requirement	Rainfall Denth	Design Storm					
Pollution Reduction	0.8 inches	Water Quality					
Flow Control	5.1 inches	Flood Control					
Destination	5.1 inches	Flood Control					
Essility Data							
Fi	Facility Type= Surface Width= Surface Length= acility Side Slopes=	Infiltration Stormwater 3.5 ft 98 ft 0 to 1	<mark>Planter</mark> Facili Facility Sur Facili Facility Bo	ty Surface Area= 343 sqft rface Perimeter= 203 ft ity Bottom Area= 343 sqft ttom Perimeter= 203 ft			
Max. I in Storr Depth of Grow	Ponding Depth mwater Facility= ring Medium (Soil)=	10 in 18 in	Ratio of Facility Area to Ir	Basin Volume= 285.8 cf npervious Area= 0.072			

Pollution Reduction-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.018 c	fs Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 247 c	f Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 0.0 in	<u></u> ו						
Drawdown Time= 0.2	ours						
Yes Facility Sizing Meets Pollution Reduction Standards?							
YES Meets Requirement of	No Facility Flooding?						
YES Meets Requirement for	Maximum of 18 Hour Drawdown Time?						
Flow Control-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.130 c	fs Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1899 c	f Total Overflow Volume= 0 cf						
	Peak Off-Site Flow Rate						
Max. Depth of Stormwater in Facility= 9.1 in	n Filtration Facility Underdrain= N\A cfs						
Drawdown Time= 0.2 h	ours						
Pre-Development Runoff Data							
Peak Flow Rate = 0.061 c	fs						
Total Runoff Volume = 920 c	t						
Yes Facility Sizing Meets Flow	Control Standards?						
YES Meets Requirement for YES Meets Requirement for	Post Development offsite flow less or equal to Pre-Development Flow? Maximum of 18 Hour Drawdown Time?						
Destination-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.130 c	fs Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1899 c	f Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 9.1 in	1						
Drawdown Time= 0.2	ours						
Yes Facility Sizing Meets Desti	nation Standards?						
YES Meets Requirement of	No Facility Flooding?						
YES Meets Requirement for	Maximum of 30 hour Drawdown Time?						

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene					
	Version 2.1					
Project Information						
Project Name:	Myrtle Glenn PUD			Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		F	Permit Number:	<u>NA</u>	
	Florence, OR		C	atchment ID:	<u>1E</u>	
Designer:	Clint Beecroft					
Company:	EGR & Associates					
Instructions:						
1. Complete this form for	each drainage catch	ment in the project site t	that is to be sized	per the Presump	ptive Approach.	
2. Provide a distinctive C	atchment ID for each	facility coordinated with	n the site basin ma	p to correlate the	e appropriate	
calculations with the fa	acility.					
3. The maximum drainag	e catchment to be m	odeled per the Presump	otive Approach is 1	acre (43,560 SI	F)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ting has been perfi	romed use an ini	filtration rate of 0.	5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	opsoil/growing me	dium.		
Design Requirements:						
Choose "Yes" from the d	ropdown boxes below	v next to the design stan	ndards requiremen	ts for this facility	1.	
Pollution Reducti	on (PR) Yes					
Flow Cont						
Destinati					,	
Destinati		An infiltration facility must be	chosen as the facility ty	pe to meet destination	ion requirements	
Site Data-Post Develop	ment					
		5000		- / -		
Total Square Footag	e Impervious Area=	5362 sqft	Total Sq	uare Footage P	ervious Area=	0 sqft
In	pervious Area CN=	98		Pervi	ious Area CN=	85
Total Square Footage	e of Drainage Area=	5362 sft	Time of Conce	entration Post I	Development=	10 min
	ginted Average ON-	30				
Site Data-Pre Developn	nent (Data in th	is section is only used	d if Flow Control	is required)		
Pre	e-Development CN=	73	Time of Cond	centration Pre-I	Development=	<mark>5</mark> min
Soil Data						
Tested Se	oil Infiltration Rate=	10 in/hr (See No	ote 4)	Destin	ation Design=	4 in/hr
Design S	oil Infiltration Rate=	4 in/hr		Soil In	filtration Rate	
Design Storms Used Fo	or Calculations					
Requirement	Rainfall Depth	Design Storm				
Pollution Reduction	0.8 inches	Water Quality				
Flow Control	5.1 inches	Flood Control				
Destination	5.1 inches	Flood Control				
Facility Data	· ·					
	Escility Type=	Infiltration Stormwate	r Blantor	Facility		729 ooft
	Facility Type=	e ff		Facility Surfa	co Perimotor	258 ft
	Surface Longth=	123 ff		Facility Surfa	Bottom Aroa-	238 soft
	acility Side Slonce	4 to 1		Facility Botto	m Perimeter=	230 Sqit
Мах	Ponding Denth			a acinty Botto		
in Stor	mwater Facility=	6 in		В	asin Volume=	248.0 cf
Depth of Grow	/ing Medium (Soil)=	18 in	Ratio of Faci	lity Area to Imp	ervious Area=	0.138
	J (1997)					

Pollution Reduction-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.020 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 279 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 0.0 in							
Drawdown Time= 0.2 hou	irs						
Yes Facility Sizing Meets Pollution Reduction Standards?							
YES Meets Requirement of No	Facility Flooding?						
YES Meets Requirement for M	aximum of 18 Hour Drawdown Time?						
Flow Control-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.147 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 2146 cf	Total Overflow Volume= 0 cf						
	Peak Off-Site Flow Rate						
Max. Depth of Stormwater in Facility= 5.4 in	Filtration Facility Underdrain= N\A cfs						
Drawdown Time= 0.2 hou	irs						
Pre-Development Runoff Data							
Peak Flow Rate = 0.009 cls							
Yes Facility Sizing Meets Flow C	ontrol Standards?						
YES Meets Requirement for P YES Meets Requirement for M	ost Development offsite flow less or equal to Pre-Development Flow? aximum of 18 Hour Drawdown Time?						
Destination-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.147 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 2146 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 5.4 in							
Drawdown Time= 0.2 hou	Irs						
Yes Facility Sizing Meets Destina	ation Standards?						
YES Meets Requirement of No	Facility Flooding?						
YES Meets Requirement for M	aximum of 30 hour Drawdown Time?						

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene								
	Version 2.1								
Project Information									
Project Name:	Myrtle Glenn PUD		Date:	7/25/2023					
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	NA					
	Florence, OR		Catchment ID:	<u>1E-1</u>					
Designer:	Clint Beecroft								
Company:	EGR & Associates								
Instructions:									
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Presum	otive Approach.					
2. Provide a distinctive C	atchment ID for each	1 facility coordinated with	the site basin map to correlate the	e appropriate					
calculations with the fa	icility.								
3. The maximum drainag	e catchment to be m	odeled per the Presump	ive Approach is 1 acre (43,560 SI	-)					
4.For infiltration facilities	in Class A or B soils	where no infiltration testi	ng has been perfromed use an int	iltration rate of 0.5 in/hr.					
For all facilities use a	maximum soil infiltrat	tion rate of 2.5 in/hr for to	psoil/growing medium.						
Design Requirements:									
Choose "Yes" from the d	ropdown boxes belov	<i>w</i> next to the design stan	dards requirements for this facility						
Dollution Doducti		1							
Pollution Reduction	on (PR) fes	-							
Flow Cont	rol (FC) Yes								
Destinati	on (DT) Yes	*An infiltration facility must be	chosen as the facility type to meet destination	on requirements					
Site Data-Post Develop	ment								
Total Square Footag	e Impervious Area=	3044 saft	Total Square Footage P	ervious Area=					
In In	pervious Area CN=	98	Pervi	ous Area CN=					
Total Square Footage	of Drainage Δrea=	3044 sft	Time of Concentration Post	evelopment= 10 min					
Voi	abtod Avorago CN-	. 08	Time of concentration 1 ost 1						
4461	gilled Average CN-	90	Weighted Average CN= 98						
Site Data-Pre Developm	ient (Data in th	Site Data-Pre Development (Data in this section is only used if Flow Control is required)							
_			if Flow Control is required)						
Pre	-Development CN=	73	if Flow Control is required) Time of Concentration Pre-I	Development= 5 min					
Pre Soil Data	e-Development CN=	73	if Flow Control is required) Time of Concentration Pre-I	Development=5min					
Pre Soil Data	e-Development CN=	10 in/hr (See No	if Flow Control is required) Time of Concentration Pre-D	Development= 5 min					
Pre Soil Data Tested So Design So	Development CN=	10 in/hr (See No	if Flow Control is required) Time of Concentration Pre-D te 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pre Soil Data Tested So Design So	Development CN= Dil Infiltration Rate= Dil Infiltration Rate=		if Flow Control is required) Time of Concentration Pre-D te 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pro Soil Data Tested So Design Storms Used Fo	Development CN= Dil Infiltration Rate= Dil Infiltration Rate= Dr Calculations	73 10 in/hr (See No 4 in/hr	if Flow Control is required) Time of Concentration Pre-D ie 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pro Soil Data Tested So Design Storms Used Fo Requirement	e-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth	10 in/hr (See No 4 in/hr	if Flow Control is required) Time of Concentration Pre-D te 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pro Soil Data Tested So Design Storms Used Fo Requirement Pollution Reduction	b-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches	73 10 in/hr (See No 4 in/hr Design Storm Water Quality	if Flow Control is required) Time of Concentration Pre-D te 4) Destin Soil In	Development= 5min ation Design= 4in/hr filtration Rate					
Pre Soil Data Tested So Design Storms Used Fo Requirement Pollution Reduction Flow Control	b-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches	73 10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control	if Flow Control is required) Time of Concentration Pre-D te 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
President Source	b-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches	73 10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control Flood Control	if Flow Control is required) Time of Concentration Pre-D te 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pro Soil Data Tested Su Design Storms Used For Requirement Pollution Reduction Flow Control Destination Eacility Data	b-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches	10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control Flood Control	if Flow Control is required) Time of Concentration Pre-I ie 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pro Soil Data Tested So Design So Design Storms Used For Requirement Pollution Reduction Flow Control Destination Facility Data	b-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches	73 10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control Flood Control	if Flow Control is required) Time of Concentration Pre-I ie 4) Destin Soil In	Development= 5 min ation Design= 4 in/hr filtration Rate					
Pro Soil Data Tested So Design So Design Storms Used For Requirement Pollution Reduction Flow Control Destination Facility Data	e-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches Facility Type=	73 10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control	if Flow Control is required) Time of Concentration Pre-E te 4) Destin Soil In Soil In Facility States of Concentration Pre-E	Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 426 sqft					
Pro Soil Data Tested So Design Storms Used Fo Requirement Pollution Reduction Flow Control Destination Facility Data	e-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches Facility Type= Surface Width=	73 10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control Infiltration Stormwater 6 ft	if Flow Control is required) Time of Concentration Pre-I re 4) Destin Soil In Facility Surfa	Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 426 sqft ce Perimeter= 154 ft					
Pro Soil Data Tested So Design Storms Used Fo Requirement Pollution Reduction Flow Control Destination Facility Data	e-Development CN= bil Infiltration Rate= bil Infiltration Rate= br Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches Facility Type= Surface Width= Surface Length=	10 in/hr (See No 10 in/hr 10 in/hr	if Flow Control is required) Time of Concentration Pre-I (e 4) Destin Soil In Planter Facility Surfa Facility Surfa Facility Surfa	Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 426 ce Perimeter= 154 Bottom Area= 134 sqft					
Field Science Proceedings of the second seco	e-Development CN= poil Infiltration Rate= pr Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches Facility Type= Surface Width= Surface Length= acility Side Slopes=	T3 10 in/hr (See No 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control Infiltration Stormwater 6 ft 71 ft 4 to 1	if Flow Control is required) Time of Concentration Pre-I (e 4) Destin Soil In Planter Facility Surfa Facility Surfa Facility Botto	Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 426 ce Perimeter= 154 Bottom Area= 134 m Perimeter= 138 ft					
Fracility Data	e-Development CN= poil Infiltration Rate= pr Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches Surface Width= Surface Length= acility Side Slopes= Ponding Depth		if Flow Control is required) Time of Concentration Pre-I (e 4) Destin Soil In Planter Facility Surfa Facility Surfa Facility Botto	Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 426 ce Perimeter= 154 Bottom Area= 134 m Perimeter= 138 ft					
Pro Soil Data Tested So Design Storms Used Fo Requirement Pollution Reduction Flow Control Destination Facility Data Facility Data Facility Control In Storm	e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches Surface Width= Surface Length= acility Side Slopes= Ponding Depth mwater Facility=		if Flow Control is required) Time of Concentration Pre-I (e 4) Destin Soil In Planter Facility Surfa Facility Surfa Facility Botto B	Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 426 ce Perimeter= 154 ft Bottom Area= 134 sqft m Perimeter= 138 ft asin Volume= 144.0 cf					

Pollution Reduction-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.011 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 158 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 0.0 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Pollution Reduction Standards?							
YES Meets Requirement of No Facility	/ Flooding?						
YES Meets Requirement for Maximum	n of 18 Hour Drawdown Time?						
Flow Control-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.083 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1218 cf	Total Overflow Volume= 0 cf						
	Peak Off-Site Flow Rate						
Max. Depth of Stormwater in Facility= 5.4 in	Filtration Facility Underdrain= N\A cfs						
Drawdown Time= 0.2 hours							
Pre-Development Runoff Data							
Peak Flow Rate = 0.039 cfs							
Total Runoff Volume = 590 cf							
Yes Facility Sizing Meets Flow Control	Standards?						
YES Meets Requirement for Post Deve YES Meets Requirement for Maximum	elopment offsite flow less or equal to Pre-Development Flow? n of 18 Hour Drawdown Time?						
Destination-Calculation Results							
Peak Flow Rate to Stormwater Facility = 0.083 cfs	Peak Facility Overflow Rate= 0.000 cfs						
Total Runoff Volume to Stormwater							
Facility = 1218 cf	Total Overflow Volume= 0 cf						
Max. Depth of Stormwater in Facility= 5.4 in							
Drawdown Time= 0.2 hours							
Yes Facility Sizing Meets Destination S	tandards?						
YES Meets Requirement of No Facility	/ Floodina?						
YES Meets Requirement for Maximum	n of 30 hour Drawdown Time?						

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		Date	e: <mark>7/25/2023</mark>	
Project Address:	<u>18-12-22-11-01200</u>		Permit Number	na NA	
	Florence, OR		Catchment ID:	<u>1E-2</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	each drainage catch	ment in the project site f	that is to be sized per the Presun	nptive Approach.	
2. Provide a distinctive C calculations with the fa	atchment ID for each acility.	facility coordinated with	the site basin map to correlate t	he appropriate	
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,560 \$	SF)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ing has been perfromed use an i	nfiltration rate of 0.5 in/hr.	
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	opsoil/growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this facili	ty.	
Pollution Reduction	on (PR) Yes	1			
Flow Cont					
Dostinati	on (DT) Vos	* A infilmation fooilite		41	
Destinati		An initiation facility must be	chosen as the facility type to meet destina	auon requirements	
Site Data-Post Develop	ment				
Tatal Orange Franks		0040	Tatal Original Factoria		
I otal Square Footag	Imporvious Area CN= 08				
Impervious Area CN= 98 Pervious Area CN= 85					
Total Square Footage Wei	e of Drainage Area= obted Average CN=	2318 sft	Time of Concentration Post	Development= 10 min	
	gitte a fill of a go off				
Site Data-Pre Developm	ient (Data in tr	is section is only used	I If Flow Control is required)		
Pre	e-Development CN=	73	Time of Concentration Pre	-Development= 5 min	
Soil Data					
Tested Se	oil Infiltration Rate=	10 in/hr (See No	ote 4) Desti	nation Design=4 in/hr	
Design So	oil Infiltration Rate=	4 in/hr	Soil	nfiltration Rate	
Design Storms Used Fo	or Calculations				
Requirement	Rainfall Depth	Design Storm			
Pollution Reduction	0.8 inches	Water Quality			
Flow Control	5.1 inches	Flood Control			
Destination	5.1 inches	Flood Control			
Eacility Data	Equility Data				
r acinty Data					
	Facility Type=		Franter Facility	Surrace Area = 312 sqft	
	Surface Width=	52 ft	Facility Surf		
E.	Surrace Length=		Facility Pot	tom Perimeter= 100 ff	
Fi May	Ponding Denth	4 10 1	Facility DOL		
in Stor	mwater Facility=	6 in		Basin Volume= 106.0 cf	
Depth of Grow	ving Medium (Soil)=	18 in	Ratio of Facility Area to Im	pervious Area= 0.135	
	- ()		,		

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.009 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 121 cf	Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 0.0 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Pollution R	reduction Standards?			
YES Meets Requirement of No Fac	ility Flooding?			
YES Meets Requirement for Maxim	um of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.063 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 928 cf	Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 5.6 in	Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.2 hours				
Pre-Development Runoff Data				
Peak Flow Rate = 0.030 cfs				
Total Runoff Volume = 450 cf				
Yes Facility Sizing Meets Flow Contr	ol Standards?			
YES Meets Requirement for Post D YES Meets Requirement for Maxim	Development offsite flow less or equal to Pre-Development Flow? Num of 18 Hour Drawdown Time?			
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.063 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 928 cf	Total Overflow Volume=0 cf			
Max. Depth of Stormwater in Facility= 5.6 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Fac	ility Flooding?			
YES Meets Requirement for Maxim	num of 30 hour Drawdown Time?			

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date	: <mark>7/25/2023</mark>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number	: <mark>NA</mark>
	Florence, OR		Catchment ID:	<u>1F</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Presun	nptive Approach.
2. Provide a distinctive C calculations with the fa	atchment ID for each acility.	facility coordinated with	the site basin map to correlate t	he appropriate
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,560 \$	SF)
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ing has been perfromed use an i	nfiltration rate of 0.5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	psoil/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this facili	y.
Pollution Reduction	on (PR) Yes	1		
Flow Cont				
Dostinati	on (DT) Vos	* A in filterations for siliter more that		41
Destinati		An initiation facility must be	chosen as the facility type to meet destina	lion requirements
Site Data-Post Develop	ment			
		1514		
I otal Square Footag	e Impervious Area=	4511 sqft	Iotal Square Footage	views Area CN=
Impervious Area CN= 98 Pervious Area CN= 85				
Total Square Footage	e of Drainage Area=	4511 sft	Time of Concentration Post	Development= 10 min
	gilled Average OII-			
Site Data-Pre Developm	ient (Data in th	is section is only used	if Flow Control is required)	
Pre	e-Development CN=	73	Time of Concentration Pre	-Development= 5 min
Soil Data				
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4) Desti	nation Design=4 in/hr
Design So	oil Infiltration Rate=	4 in/hr	Soil	nfiltration Rate
Design Storms Used Fo	or Calculations			
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
r acinty Data				
	Facility Type=		Franter Facility	Surrace Area= /00.8 sqft
	Surface Width=		Facility Surf	Ace Perimeter= 245.6 It
E.	Surrace Length=		Facility Pot	com Perimeter= 220 squ
Fi Mav	Ponding Denth	4 10 1	Facility DOL	
in Stor	mwater Facility=	6 in		Basin Volume= 235.6 cf
Depth of Grow	ving Medium (Soil)=	18 in	Ratio of Facility Area to Im	pervious Area= 0.155
	5 ()			

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.017 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 235 cf	Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 0.0 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Pollution	Reduction Standards?			
YES Meets Requirement of No Fa	acility Flooding?			
YES Meets Requirement for Maxi	imum of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.124 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 1805 cf	Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 4.8 in	Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.2 hours				
Pre-Development Runoff Data				
Peak Flow Rate = 0.058 cfs				
Total Runoff Volume = 875 cf				
Yes Facility Sizing Meets Flow Con	trol Standards?			
YES Meets Requirement for Post YES Meets Requirement for Maxi	Development offsite flow less or equal to Pre-Development Flow? imum of 18 Hour Drawdown Time?			
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.124 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 1805 cf	Total Overflow Volume=0 cf			
Max. Depth of Stormwater in Facility= 4.8 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Factor	acility Flooding?			
YES Meets Requirement for Maxi	imum of 30 hour Drawdown Time?			

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date:	7/25/2023
Project Address:	18-12-22-11-01200		Permit Number:	NA
	Florence, OR		Catchment ID:	<u>1F-1</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1. Complete this form for	each drainage catch	ment in the project site tha	t is to be sized per the Presum	ptive Approach.
2. Provide a distinctive C	atchment ID for each	facility coordinated with th	e site basin map to correlate th	e appropriate
calculations with the fa	acility.	- I - I - I	A	
3. The maximum drainag	e catchment to be m	odeled per the Presumptive	e Approach is 1 acre (43,560 S	F) Filmsting and a store from the
4.For infiltration facilities	In Class A or B soils	where no infiltration testing	has been perfromed use an in	filtration rate of 0.5 in/hr.
For all facilities use a f	maximum soli inflitrat	ion rate of 2.5 in/nr for tops	soli/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes belov	v next to the design standa	rds requirements for this facility	Ι.
Pollution Reduction	on (PR) Yes			
Flow Cont				
Destincti				
Destination		"An inflitration facility must be cho	osen as the facility type to meet destinat	ion requirements
Site Data-Post Develop	ment			
		0011		
Total Square Footag	I otal Square Footage Impervious Area= 2314 sqπ I otal Square Footage Pervious Area= 0 sqπ			
Impervious Area CN= 98 Pervious Area CN= 85				
Total Square Ecotag	of Drainago Aroa-	2314 off	Time of Concentration Post	Povelopment 10 min
Voi	e of Drainage Area-	2314 SIL	Time of Concentration Post	Development-
Site Data-Pre Developm	ient (Data in th	is section is only used if	Flow Control is required)	
Pre	e-Development CN=	73	Time of Concentration Pre-	Development= 5 min
Soil Data				
Tested So	oil Infiltration Rate=	10 in/hr (See Note 4	4) Destin	ation Design= 4 in/hr
Design So	oil Infiltration Rate=	4 in/hr	Soil Ir	filtration Rate
Design Storms Used Fo	or Calculations			
Denvinement	Deinfell Denth	Decise Otome		
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
	Facility Type=	Infiltration Stormwater P	Planter Facility	Surface Area= 414 sqft
	Surface Width=	<mark>6</mark> ft	Facility Surfa	ce Perimeter= 150 ft
	Surface Length=	<mark>69</mark> ft	Facility	Bottom Area= 130 sqft
Fa	acility Side Slopes=	4 to 1	Facility Botto	om Perimeter= 134 ft
Max.	Ponding Depth			
in Stor	mwater Facility=	6 in	Β	Basin Volume= 140.0 cf
- B	una Madium (Sail)-	18 in	Ratio of Facility Area to Imp	

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.009 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 120 cf	Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 0.0 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Pollution Re	eduction Standards?			
YES Meets Requirement of No Facil	ity Flooding?			
YES Meets Requirement for Maximu	Im of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.063 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 926 cf	Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 4.0 in	Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.2 hours				
Pre-Development Runoff Data				
Peak Flow Rate = 0.030 cfs				
Total Runoff Volume = 449 cf				
Yes Facility Sizing Meets Flow Contro	ol Standards?			
YES Meets Requirement for Post De YES Meets Requirement for Maximu	evelopment offsite flow less or equal to Pre-Development Flow? Im of 18 Hour Drawdown Time?			
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.063 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 926 cf	Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 4.0 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Facil	ity Flooding?			
YES Meets Requirement for Maximu	um of 30 hour Drawdown Time?			

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		Da	nte: 7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		Permit Numb	per: <mark>NA</mark>	
	Florence, OR		Catchment II): <u>1F-2</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Pres	umptive Approach.	
2. Provide a distinctive C	atchment ID for each	facility coordinated with	the site basin map to correlate	e the appropriate	
calculations with the fa	acility.				
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,56	0 SF)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ing has been perfromed use a	n infiltration rate of 0.5 in/hr.	
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	psoil/growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this fac	ility.	
Pollution Reduction	on (PR) Yes	1			
Flow Cont					
Destinati	on (DT) Ves	*An infiltration facility must be	abaaan oo tha faaility tyna ta maat daa	inction requirements	
Destinati		An initiation facility must be	chosen as the facility type to meet des	ination requirements	
Site Data-Post Develop	ment				
Total Causara Fastar		0407 a wft	Total Courses Footon		
Total Square Footag	Total Square Footage Impervious Area 2197 Square Footage Pervious Area 0 Square 10 Square Footage Pervious Area 0 Square 10 Sq				
Impervious Area CN= 98 Pervious Area CN= 85					
Total Square Footage	e of Drainage Area=	2197 sft	Time of Concentration Po	st Development= 10 min	
Wei	ghted Average CN=	98			
Site Data-Pre Developm	nent (Data in th	is section is only used	if Flow Control is required)		
Pre	e-Development CN=	73	Time of Concentration P	re-Development=5 min	
Soil Data					
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4) Des	stination Design= 4 in/hr	
Design Se	oil Infiltration Rate=	4 in/hr	So	il Infiltration Rate	
Design Storms Used Fo	or Calculations				
Boguiromont	Painfall Donth	Decign Storm			
Requirement Pollution Reduction		Water Quality			
Foliation Reduction	5.1 inches	Flood Control			
Destination	5.1 inches	Flood Control			
Socility Data					
Facility Data					
	Facility Type=	Infiltration Stormwate	r Planter Facil	ity Surface Area 294 sqft	
	Surface Width=	6 ft	Facility Su	Intace Perimeter= 110 ft	
_	Surface Length=	49 ft	Faci	ity Bottom Area= 90 sqft	
Fa	acility Side Slopes=	4 to 1	Facility B	ottom Perimeter= 94 ft	
wiax.	mwater Facility=	6 in		Basin Volume= 100.0 of	
Depth of Grow	ving Medium (Soil)=	18 in	Ratio of Facility Area to I	mpervious Area 0 134	
Beptil of Glow			Area to I	0.104	

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.008 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 114 cf	Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 0.0 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Pollution Re	eduction Standards?			
YES Meets Requirement of No Facil	lity Flooding?			
YES Meets Requirement for Maximu	um of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.060 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater	· · · · · · · · · · · · · · · · · · ·			
Facility = 879 cf	Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 5.7 in	Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.2 hours				
Pre-Development Runoff Data				
Peak Flow Rate = 0.028 cts				
Yes Facility Sizing Meets Flow Contro	bl Standards?			
YES Meets Requirement for Post De YES Meets Requirement for Maximu	evelopment offsite flow less or equal to Pre-Development Flow? um of 18 Hour Drawdown Time?			
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.060 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 879 cf	Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 5.7 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Facil	lity Flooding?			
YES Meets Requirement for Maximu	um of 30 hour Drawdown Time?			

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		C	ate: 7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		Permit Num	ber: <u>NA</u>	
	Florence, OR		Catchment	D: <u>1G</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Pre	sumptive Approach.	
2. Provide a distinctive C calculations with the fa	atchment ID for each acility.	facility coordinated with	the site basin map to correla	te the appropriate	
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,5	60 SF)	
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ing has been perfromed use a	an infiltration rate of 0.5 in/hr.	
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	psoil/growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this fa	cility.	
Pollution Reduction	on (PR) Yes	1			
Flow Cont					
Destinati	on (DT) Ves	*An infiltration facility must be	abagan as the facility type to most de	atination requirements	
Destinuti		An initiation facility must be	chosen as the facility type to meet de	sunation requirements	
Site Data-Post Develop	ment				
				[
Total Square Footag	Total Square Footage Impervious Area = 3120 sqlt Total Square Footage Pervious Area Chi				
Impervious Area CN= 98 Pervious Area CN= 85					
Total Square Footage Wei	e of Drainage Area= obted Average CN=	3126 sft	Time of Concentration P	ost Development=	<mark>10</mark> min
	ginten interage en				
Site Data-Pre Developm	ient (Data in tr	is section is only used	If Flow Control is required		
Pre	e-Development CN=	73	Time of Concentration	Pre-Development=	<mark>5</mark> min
Soil Data					
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4) De	estination Design=	4 in/hr
Design So	oil Infiltration Rate=	4 in/hr	S	oil Infiltration Rate	
Design Storms Used Fo	or Calculations				
Requirement	Rainfall Depth	Design Storm			
Pollution Reduction	0.8 inches	Water Quality			
Flow Control	5.1 inches	Flood Control			
Destination	5.1 inches	Flood Control			
Eacility Data	•				
r acinty Data					
	Facility Type=	Infiltration Stormwate	r Planter Fac	lility Surface Area= 4	38 sqπ
	Surface Width=		Facility S	uriace Perimeter= 1	38 caft
E.	Surrace Length=		Fac Eacility 5	Rottom Perimetor	42 ft
Гі Мах	Ponding Denth	4 10 1	Facility		72 IL
in Stor	mwater Facility=	6 in		Basin Volume= 148	3.0 cf
Depth of Grow	ving Medium (Soil)=	18 in	Ratio of Facility Area to	Impervious Area= 0.1	40
	5		· · · · · ·		

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility =	0.012 cfs Peak Facility Overflow Ra	ate= 0.000 cfs		
Total Runoff Volume to Stormwater				
Facility =	163 cf Total Overflow Volur	ne= 0 cf		
Max. Depth of Stormwater in Facility=	0.0 in			
Drawdown Time=	0.2 hours			
Yes Facility Sizing Meets	Pollution Reduction Standards?			
YES Meets Requirem	ent of No Facility Flooding? ent for Maximum of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility =	0.086 cfs Peak Facility Overflow Ra	ate= 0.000 cfs		
Total Runoff Volume to Stormwater	********************************			
Facility =	1251 cf Total Overflow Volur	ne= 0 cf		
	Peak Off-Site Flow F	Rate		
Max. Depth of Stormwater in Facility=	5.4 in Filtration Facility Underdra	ain= N\A cfs		
Drawdown Time=	0.2 hours			
Pre-Development Runoff Data Peak Flow Rate = 0.040 cfs Total Runoff Volume = 606 cf Yes Facility Sizing Meets Flow Control Standards? YES Meets Requirement for Post Development offsite flow less or equal to Pre-Development Flow?				
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = Total Runoff Volume to Stormwater Facility =	0.086 cfs Peak Facility Overflow Ra 1251 cf Total Overflow Volur	ate= 0.000 cfs me= 0 cf		
Max. Depth of Stormwater in Facility= Drawdown Time=	5.4 in 0.2 hours			
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Facility Flooding? YES Meets Requirement for Maximum of 30 hour Drawdown Time?				

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD	<u> </u>		Date:	: <u>7/25/2023</u>
Project Address:	<u>18-12-22-11-0120</u>	<u>)</u>	Permit N	lumber:	: <u>NA</u>
	Florence, OR		Catchme	ent ID:	<u>1H</u>
Designer:	Clint Beecroft				
Company:	EGR & Associate	<u>s</u>			
Instructions:					
1. Complete this form for	each drainage cato	hment in the project site	hat is to be sized per the	Presum	ptive Approach.
2. Provide a distinctive C calculations with the fa	atchment ID for eac acility.	h facility coordinated with	the site basin map to cor	relate th	ne appropriate
3. The maximum drainag	e catchment to be i	nodeled per the Presump	tive Approach is 1 acre (4	3,560 S	F)
4.For infiltration facilities	in Class A or B soil	s where no infiltration test	ing has been perfromed u	ise an in	filtration rate of 0.5 in/hr.
For all facilities use a r	maximum soil infiltra	ation rate of 2.5 in/hr for to	psoil/growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes belo	w next to the design stan	dards requirements for th	is facility	<i>ų</i> .
Pollution Poducti		7			
Fonution Reduction		-			
Flow Conti	rol (FC) Yes	_			
Destination	on (DT) Yes	*An infiltration facility must be	chosen as the facility type to mee	et destinat	ion requirements
Cita Data Dast Davalar					
Site Data-Post Develop	ment				
Total Square Footage	Total Square Footage Impervious Area= 5594 sqft Total Square Footage Pervious Area= 0 sqft				
Im	Impervious Area CN= 98 Pervious Area CN= 85				
Total Square Footage	e of Drainage Area	= 5594 sft	Time of Concentratio	n Post	Development= 10 min
Weighted Average CN= 98					
Site Data-Pre Developm	nent (Data in t	his section is only used	if Flow Control is requi	ired)	
Bro		72	Time of Concentrati	on Bro	Development 5 min
	-Development on	- 13		UII FIE-	
Soil Data					
Tested So	oil Infiltration Rate	= <u>10</u> in/hr (See No	te 4)	Destin	nation Design= 4 in/hr
Design So	oil Infiltration Rate	= 4 in/hr		Soil Ir	nfiltration Rate
Design Storms Used Fo	or Calculations				
Requirement	Rainfall Denth	Design Storm			
Pollution Reduction	0.8 inches	Water Quality			
Flow Control	5.1 inches	Flood Control			
Destination	5 1 inches	Flood Control			
Essility Data					
Facility Data					
	Facility Type	= Infiltration Stormwate	r Planter	Facility	Surface Area= 780 sqft
	Surface Width	= <u>6</u> ft	Facili	ty Surfa	ace Perimeter= 272 ft
	Surface Length	= <u>130</u> ft		Facility	Bottom Area= 252 sqft
Fa	acility Side Slopes	=4 to 1	Facili	ity Botto	om Perimeter= 256 ft
Max.	Ponding Depth	e in		-	Pagin Volumo-
In Stori	inwater Facility=		Datio of Facility Area	± 	
Depth of Growing Medium (Soil)= 18 in Ratio of Facility Area to Impervious Area= 0.139					

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.021 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 291 cf	Total Overflow Volume=0 cf			
Max. Depth of Stormwater in Facility= 0.0 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Pollution Re	duction Standards?			
YES Meets Requirement of No Facili	ty Flooding?			
YES Meets Requirement for Maximu	m of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.153 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater	· · · · · · · · · · · · · · · · · · ·			
Facility = 2239 cf	Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 5.4 in	Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.2 hours				
Pre-Development Runoff Data				
Peak Flow Rate = 0.072 cfs				
Total Runoff Volume = 1085 cf				
Yes Facility Sizing Meets Flow Contro	I Standards?			
YES Meets Requirement for Post De YES Meets Requirement for Maximu	velopment offsite flow less or equal to Pre-Development Flow? m of 18 Hour Drawdown Time?			
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.153 cfs	Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 2239 cf	Total Overflow Volume=0 cf			
Max. Depth of Stormwater in Facility= 5.4 in				
Drawdown Time= 0.2 hours				
Yes Facility Sizing Meets Destination Standards?				
YES Meets Requirement of No Facili	ity Floodina?			
YES Meets Requirement for Maximu	m of 30 hour Drawdown Time?			

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		Di	ate: 7/25/2023	
Project Address:	18-12-22-11-01200		Permit Num	per: NA	
	Florence, OR		Catchment II	D: <u>1H-1</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Pres	umptive Approach.	
2. Provide a distinctive C	atchment ID for each	facility coordinated with	the site basin map to correlat	e the appropriate	
calculations with the fa	acility.				
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,56	USF)	
4.For infiltration facilities	In Class A or B soils	where no infiltration test	ng has been perfromed use a	n infiltration rate of 0.5 in/hr.	
For all facilities use a	maximum soli inflitrat	on rate of 2.5 In/hr for to	psoli/growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes below	/ next to the design stan	dards requirements for this fac	cility.	
Pollution Reduction	on (PR) Yes				
Flow Cont					
Destinati					
Destinati		An infiltration facility must be	chosen as the facility type to meet des	tination requirements	
Site Data-Post Develop	ment				
Total Square Footag	e Impervious Area=	3137 sqft	Total Square Footag	e Pervious Area=	sqft
In	ipervious Area CN=	98	Р	ervious Area CN= 85	
Total Square Ecotag	of Drainago Aroa-	3137 off	Time of Concentration Br	st Development=	min
Voi	ohted Average CN=	98			
Site Data-Pre Developm	ient (Data in th	is section is only used	If Flow Control Is required)		
Pre	-Development CN=	73	Time of Concentration P	re-Development= 5	nin
Soil Data					
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4) De	stination Design= 4	n/hr
Design Se	oil Infiltration Rate=	4 in/hr	So	il Infiltration Rate	
Design Storms Used Fo	or Calculations				
Poquiromont	Painfall Donth	Dosign Storm			
Requirement Bollution Boduction		Weter Quelity			
Foliution Reduction	5.1 inches				
Destination	5.1 inches	Flood Control			
Socility Data					
Facility Data					
	Facility Type=	Infiltration Stormwate	r Planter Faci	ity Surface Area 462	sqft
	Surface Width=	6 ft	Facility St	urface Perimeter= 166 1	t
	Surface Length=	77 ft	Faci	lity Bottom Area= 146	sqtt
Fa	acility Side Slopes=	4 to 1	Facility B	ottom Perimeter= 150 1	t
Max.	Ponding Depth	6 in		Basin Volumer 150.0	of
Depth of Crow	niwater Facility=	18 in	Patio of Essility Area to		
Depth of Grow	ing weulum (Soll)=		Ratio of Facility Area to	0.147	

Pollution Reduction-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.012 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 163 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 0.0 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Pollution R	Reduction Standards?
YES Meets Requirement of No Fac	ility Flooding?
YES Meets Requirement for Maxim	num of 18 Hour Drawdown Time?
Flow Control-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.086 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 1256 cf	Total Overflow Volume= 0 cf
	Peak Off-Site Flow Rate
Max. Depth of Stormwater in Facility= 5.1 in	Filtration Facility Underdrain= N\A cfs
Drawdown Time= 0.2 hours	
Pre-Development Runoff Data	
Peak Flow Rate = 0.041 cfs	
Total Runoff Volume = 608 cf	
Yes Facility Sizing Meets Flow Contr	rol Standards?
YES Meets Requirement for Post D YES Meets Requirement for Maxim	Development offsite flow less or equal to Pre-Development Flow? num of 18 Hour Drawdown Time?
Destination-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.086 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 1256 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 5.1 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Destination	n Standards?
YES Meets Requirement of No Fac	ility Flooding?
YES Meets Requirement for Maxim	num of 30 hour Drawdown Time?

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		C	late: 7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		Permit Num	ber: <u>NA</u>	
	Florence, OR		Catchment	D: <u>1H-2</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	each drainage catch	ment in the project site t	hat is to be sized per the Pre	sumptive Approach.	
2. Provide a distinctive C calculations with the fa	atchment ID for each acility.	facility coordinated with	the site basin map to correla	te the appropriate	
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,5	60 SF)	
4.For infiltration facilities	in Class A or B soils	where no infiltration testi	ng has been perfromed use a	an infiltration rate of 0.5 in/hr.	
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	psoil/growing medium.		
Design Requirements:					
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this fa	cility.	
Pollution Reduction	on (PR) Yes				
Flow Cont	rol (FC) Yes				
Destinati	on (DT) Yes	*An infiltration facility must be	shasan as tha facility type to most de	stination requirements	
Destinuti		An initiation facility must be	chosen as the facility type to meet de		
Site Data-Post Develop	ment				
Total Sauara Faataa	a Imponsious Aream	2457 ogft	Total Savara Fasta		.64
Total Square Footag	e inipervious Area CN=	2437 Sqit	Total Square Poola	Pervious Area CN=	n
	ipervious Area Civ-		г		
Total Square Footage	e of Drainage Area=	2457 sft	Time of Concentration P	ost Development= 10 mi	in
wei	gilled Average CN-	90			
Site Data-Pre Developm	nent (Data in th	is section is only used	if Flow Control is required		
Pre	e-Development CN=	73	Time of Concentration	Pre-Development= <u>5</u> mi	in
Soil Data					
Tested Se	oil Infiltration Rate=	10 in/hr (See No	te 4) De	estination Design=4 in/	′hr
Design So	oil Infiltration Rate=	4 in/hr	S	oil Infiltration Rate	
Design Storms Used Fo	or Calculations				
Requirement	Rainfall Depth	Design Storm			
Pollution Reduction	0.8 inches	Water Quality			
Flow Control	5.1 inches	Flood Control			
Destination	5.1 inches	Flood Control			
Eacility Data	· ·				
r acinty Data					~
	Facility Type=		Fianter Fac	urface Area 318 sq	IL
	Surface Width=	53 ff	Facility S	surface Perimeter= 118 ft	ft
E.	Surrace Length=		Fac Eacility 5	Bottom Perimeter 102 #	n
Fi May	Ponding Denth	4101	Facility		
in Stor	mwater Facility=	6 in		Basin Volume= 108.0 cf	
Depth of Grow	ving Medium (Soil)=	18 in	Ratio of Facility Area to	Impervious Area = 0.129	
			.,		

Pollution Reduction-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.009 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 128 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 0.0 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Pollution Re	eduction Standards?
YES Meets Requirement of No Facil	lity Flooding?
YES Meets Requirement for Maximu	um of 18 Hour Drawdown Time?
Flow Control-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.067 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 983 cf	Total Overflow Volume= 0 cf
	Peak Off-Site Flow Rate
Max. Depth of Stormwater in Facility= 5.8 in	Filtration Facility Underdrain= N\A cfs
Drawdown Time= 0.2 hours	
Pre-Development Runoff Data	
Peak Flow Rate = 0.032 cfs	
Total Runoff Volume = 477 cf	
Yes Facility Sizing Meets Flow Contro	ol Standards?
YES Meets Requirement for Post De YES Meets Requirement for Maximu	evelopment offsite flow less or equal to Pre-Development Flow? um of 18 Hour Drawdown Time?
Destination-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.067 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 983 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 5.8 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Destination	Standards?
YES Meets Requirement of No Facil	lity Flooding?
YES Meets Requirement for Maximu	um of 30 hour Drawdown Time?

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date:	7/25/2023
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	NA NA
-	Florence, OR		Catchment ID:	2A
Designer:	Clint Beecroft			—
Company:	FGR & Associates			
oompany.	2011 0 / 1000010100			
Instructions:				
1. Complete this form for	anah drainaga aatah	mont in the project site the	t is to be sized per the Presum	ntive Annroach
2. Dravida a distinativa C	each urainage calci	facility accordinated with the	a site basis men te serrelete th	plive Approach.
2. Provide a distinctive C	atchment ID for each	nacility coordinated with th	le site basin map to correlate th	ie appropriate
	icility.			-
3. The maximum drainag	e catchment to be m	Daeled per the Presumptive	e Approach is 1 acre (43,560 S	
4.For infiltration facilities	in Class A or B soils	where no infiltration testing	has been perfromed use an in	filtration rate of 0.5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for tops	soil/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes belov	v next to the design standa	rds requirements for this facility	<i>I</i> .
Dellestien Desteat		1		
Pollution Reduction	on (PR) Yes			
Flow Cont	rol (FC) Yes			
Destinati	on (DT) Yes	*An infiltration facility must be cho	osen as the facility type to meet destinat	ion requirements
		1		
Site Data-Post Develop	ment			
Total Causara Fastar		4005 a aft	Total Omicana Factoria B	
Total Square Footag	e Impervious Area=		Total Square Footage P	
In	ipervious Area CN=	98	Perv	ious Area CN= 85
		1005		
Total Square Footage	e of Drainage Area=	4265 sft	Time of Concentration Post	Development= 5 min
Wei	ghted Average CN=	98		
Site Data-Pre Developm	nent (Data in th	is section is only used if	Flow Control is required)	
Pro	-Development CN=	73	Time of Concentration Pre-	Development= 5 min
	-Development on-	10		
Soil Data				
Tested Se	oil Infiltration Rate=	10 in/hr (See Note	4) Destin	ation Design= 4 in/hr
Design Se	oil Infiltration Rate=	4 in/hr	Soil Ir	nfiltration Rate
Design Storms Lload Ed				
Design Storms Osed Fo				
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
Facility Data				
	Facility Type=	Infiltration Rain Garden	Facility	Surface Area= 430.44 sqft
	Surface Width=	21.1 ft	Facility Surfa	ice Perimeter= 83 ft
	Surface Length=	20.4 ft	Facility	Bottom Area= 217 sqft
Fa	acility Side Slopes=	3 to 1	Facility Botto	om Perimeter= 59 ft
Max.	Ponding Depth			
in Stor	mwater Facility=	12 in	E	Basin Volume= 341.9 cf
Depth of Grow	ring Medium (Soil)=	18 in	Ratio of Facility Area to Imp	ervious Area= 0.101
	J (•••••)	····		

Pollution Reduction-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.018 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 222 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 0.0 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Pollution Re	eduction Standards?
YES Meets Requirement of No Facil	ity Flooding?
YES Meets Requirement for Maximu	ım of 18 Hour Drawdown Time?
Flow Control-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.131 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 1711 cf	Total Overflow Volume= 0 cf
	Peak Off-Site Flow Rate
Max. Depth of Stormwater in Facility= 9.7 in	Filtration Facility Underdrain= N\A cfs
Drawdown Time= 0.2 hours	
Pre-Development Runoff Data	
Peak Flow Rate = 0.055 cfs	
lotal Runoff Volume = 827 cf	
Yes Facility Sizing Meets Flow Contro	bl Standards?
YES Meets Requirement for Post De YES Meets Requirement for Maximu	evelopment offsite flow less or equal to Pre-Development Flow? Im of 18 Hour Drawdown Time?
Destination-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.131 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 1711 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 9.7 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Destination	Standards?
YES Meets Requirement of No Facil	ity Flooding?
YES Meets Requirement for Maximu	um of 30 hour Drawdown Time?

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date:	2 <u>7/25/2023</u>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	NA
	Florence, OR		Catchment ID:	<u>2B</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1 Complete this form for	each drainage catch	ment in the project site the	at is to be sized per the Presum	ntive Approach
2. Provide a distinctive C	atchment ID for each	facility coordinated with th	e site basin man to correlate th	ne appropriate
2. Flovide a distillctive C				ie appropriate
	ionity.	adalad par the Dreaumativ	a Approach is 1 core (12 EGO S	E)
			e Approach is 1 acre (43,500 S	F)
4.For inilitration facilities	In Class A or B solls	where no inilitration testing	nas been periromed use an in	initration rate of 0.5 in/nr.
For all facilities use a l	maximum soil infiltrat	ion rate of 2.5 in/hr for tops	soil/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes below	v next to the design standa	rds requirements for this facility	<i>I</i> .
Pollution Poducti		1		
Pollution Reduction				
Flow Cont	rol (FC) Yes			
Destinati	on (DT) Yes	*An infiltration facility must be cho	osen as the facility type to meet destinat	ion requirements
Site Data-Post Develop	ment			
Total Square Footag	o Imponyious Aroa-	13078 caft	Total Square Ecotado B	
Total Square Footag	e impervious Area-	000 Sqit	Total Square Footage F	
III	ipervious Area CN-	90	Perv	ious Area CN- 00
Total Courses Fastan		40070 -#	Time of Concentration Deet	Developmenter E lucia
Total Square Footage	e of Drainage Area=	13978 SIL	Time of Concentration Post	Development= 5 min
Wei	ghted Average CN=	98		
Site Data-Pre Developm	nent (Data in th	is section is only used if	Flow Control is required)	
Pre	-Development CN=	73	Time of Concentration Pre-	Development= 5 min
0.11.0.1				
Soli Data				
Tested Se	oil Infiltration Rate=	10 in/hr (See Note	4) Destin	nation Design= 4 in/hr
Design Se	oil Infiltration Rate=	4 in/hr	Soil Ir	nfiltration Rate
Design Storms Used Fo	or Calculations			
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
	Feelitte Ter	Infiltration Date Oral	F _ 111	Surface America 1999 94
	Facility Type=	Infiltration Rain Garden	Facility	Surrace Area= 1226.04 sqft
	Surface Width=	20.4 ft	Facility Surfa	ice Perimeter= 161 ft
	Surface Length=	60.1	Facility	Bottom Area= 779 sqft
Fa Fa	acility Side Slopes=	3 to 1	Facility Botto	om Perimeter= 137 ft
Max.	Ponding Depth			
in Stor	mwater Facility=	12 in	E	Basin Volume= 1020.5 cf
Depth of Grow	ring Medium (Soil)=	18 in	Ratio of Facility Area to Imp	ervious Area= 0.088
L				

Pollution Reduction-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.058 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 729 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 0.0 in	
Drawdown Time= 0.2 hou	urs
Yes Facility Sizing Meets Pollution	on Reduction Standards?
YES Meets Requirement of No	o Facility Flooding?
YES Meets Requirement for M	laximum of 18 Hour Drawdown Time?
Flow Control-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.428 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 5606 cf	Total Overflow Volume= 0 cf
	Peak Off-Site Flow Rate
Max. Depth of Stormwater in Facility= 10.2 in	Filtration Facility Underdrain= N\A cfs
Drawdown Time= 0.2 hou	urs
Pre-Development Runoff Data	
Peak Flow Rate = 0.181 cts	
l otal Runoff Volume = 2/11 cf	
Yes Facility Sizing Meets Flow C	control Standards?
YES Meets Requirement for P YES Meets Requirement for N	ost Development offsite flow less or equal to Pre-Development Flow? laximum of 18 Hour Drawdown Time?
Destination-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.428 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 5606 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 10.2 in	
Drawdown Time= 0.2 hou	urs
Yes Facility Sizing Meets Destination	ation Standards?
YES Meets Requirement of No	o Facility Flooding?
YES Meets Requirement for N	laximum of 30 hour Drawdown Time?

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date:	: <u>7/25/2023</u>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	: NA
	Florence, OR		Catchment ID:	<u>2C</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1 Complete this form for	each drainage catch	ment in the project site the	at is to be sized per the Presum	ntive Approach
2. Provide a distinctive C	atchment ID for each	facility coordinated with the	e site basin man to correlate th	parte Approach.
2. Flovide a distillctive C				ie appropriate
	ionity.	adalad par the Dreaumptiv	Approach is 1 cars (12 EGO S	F)
		Jueleu per lite Presumptiv		F)
4.For inilitration facilities	In Class A or B solls	where no inilitration testing	g has been periromed use an in	initration rate of 0.5 in/nr.
For all facilities use a l	maximum soil infiltrat	ion rate of 2.5 in/hr for tops	soil/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes below	v next to the design standa	ards requirements for this facility	<i>ų</i> .
Pollution Poducti		1		
Flow Cont	rol (FC) Yes			
Destinati	on (DT) Yes	*An infiltration facility must be ch	osen as the facility type to meet destinat	ion requirements
Site Data-Post Develop	ment			
Total Square Footag	e Impervious Area=	11051 saft	Total Square Footage P	
I otal oquale i ootag	e impervious Area CN-		Porv	
	ipervious Area Civ-	90	Feiv	ious Alea CN-
Total Square Footag	of Drainago Araa-	11051 off	Time of Concentration Boot	Development-
Total Square Foolage	e of Drainage Area-	11051 Sit	Time of Concentration Post	Development-
vvei	gnted Average CN=	98		
Site Data-Pre Developm	nent (Data in th	is section is only used if	Flow Control is required)	
Pre	-Development CN=	73	Time of Concentration Pre-	Development= 5 min
Call Data				
Soli Data				
Tested Se	oil Infiltration Rate=	10 in/hr (See Note	4) Destin	nation Design= 4 in/hr
Design Se	oil Infiltration Rate=	4 in/hr	Soil Ir	nfiltration Rate
Design Storms Used Fo	or Calculations			
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
	P 114 P.			
	Facility Type=	Inflitration Rain Garden	Facility	Surrace Area= 1106.96 sqft
	Surface Width=	20.2 ft	Facility Surfa	ace Perimeter= 150 ft
	Surface Length=	54.8 ft	Facility	Bottom Area= 693 sqft
Fa Fa	acility Side Slopes=	3 to 1	Facility Botto	om Perimeter= 126 ft
Max.	Ponding Depth			
in Stor	mwater Facility=	12 in	E	Basin Volume= 918.0 cf
Depth of Grow	ring Medium (Soil)=	18 in	Ratio of Facility Area to Imp	pervious Area= 0.100
L				

Pollution Reduction-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.046 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 576 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 0.0 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Pollution	Reduction Standards?
YES Meets Requirement of No F	acility Flooding?
YES Meets Requirement for Max	timum of 18 Hour Drawdown Time?
Flow Control-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.338 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	·
Facility = 4432 cf	Total Overflow Volume= 0 cf
	Peak Off-Site Flow Rate
Max. Depth of Stormwater in Facility= 8.4 in	Filtration Facility Underdrain= N\A cfs
Drawdown Time= 0.2 hours	
Pre-Development Runoff Data	
Peak Flow Rate = 0.143 cts	
l otal Runoff Volume = 2144 cf	
Yes Facility Sizing Meets Flow Cor	ntrol Standards?
YES Meets Requirement for Pos YES Meets Requirement for Max	t Development offsite flow less or equal to Pre-Development Flow? kimum of 18 Hour Drawdown Time?
Destination-Calculation Results	
Peak Flow Rate to Stormwater Facility = 0.338 cfs	Peak Facility Overflow Rate= 0.000 cfs
Total Runoff Volume to Stormwater	
Facility = 4432 cf	Total Overflow Volume= 0 cf
Max. Depth of Stormwater in Facility= 8.4 in	
Drawdown Time= 0.2 hours	
Yes Facility Sizing Meets Destinati	ion Standards?
YES Meets Requirement of No F	acility Flooding?
YES Meets Requirement for Max	cimum of 30 hour Drawdown Time?

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene				
	Version 2.1				
Project Information					
Project Name:	Myrtle Glenn PUD		Date:	7/25/2023	
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	NA	
	Florence, OR		Catchment ID:	<u>2D</u>	
Designer:	Clint Beecroft				
Company:	EGR & Associates				
Instructions:					
1. Complete this form for	r each drainage catch	ment in the project site th	at is to be sized per the Presum	otive Approach.	
2. Provide a distinctive C	atchment ID for each	n facility coordinated with t	he site basin map to correlate th	e appropriate	
calculations with the fa	acility.	·····, ·····			
3 The maximum drainad	e catchment to be m	odeled per the Presumptiv	ve Approach is 1 acre (43 560 S	F)	
4 For infiltration facilities	in Class A or B soils	where no infiltration testin	ing has been perfromed use an in	filtration rate of 0.5 in/hr	
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/br for ton	soil/growing medium		
			soli/growing medium.		
Design Requirements:					
Choose "Yes" from the d	lropdown boxes belov	w next to the design stand	ards requirements for this facility	<i>.</i>	
Pollution Reducti		1			
Flow Cont					
	roi (FC) fes				
Destinati	on (DT) Yes	*An infiltration facility must be ch	nosen as the facility type to meet destinat	on requirements	
Site Data-Post Develop	ment				
Site Data-Post Develop Total Square Footag	ment e Impervious Area=	9968 sqft	Total Square Footage P	ervious Area=0sqft	
Site Data-Post Develop Total Square Footag In	ment e Impervious Area= npervious Area CN=	<mark>9968</mark> sqft	Total Square Footage P Pervi	ervious Area=0sqft ous Area CN=85	
Site Data-Post Develop Total Square Footag In	ment e Impervious Area= npervious Area CN=	<mark>9968</mark> sqft 98	Total Square Footage P Pervi	ervious Area=0sqft ous Area CN=85	
Site Data-Post Develop Total Square Footag In Total Square Footag	ment e Impervious Area= npervious Area CN= e of Drainage Area=	9968 sqft 98	Total Square Footage P Pervi Time of Concentration Post	ervious Area= 0 ous Area CN= 85 Development= 5min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei	ment e Impervious Area= npervious Area CN= e of Drainage Area= gatted Average CN=	9968 sqft 98 9968 sft 98	Total Square Footage P Pervi Time of Concentration Post I	ervious Area=0sqft ous Area CN=85 Development=5min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN=	9968 sqft 98 9968 sft 98	Total Square Footage P Pervi Time of Concentration Post I	ervious Area=0 sqft ious Area CN=85 Development=5 min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th	9968 98 9968 sft 98 is section is only used i	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required)	ervious Area= 0 ous Area CN= 85 Development= 5min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developm Pro	ment e Impervious Area= npervious Area CN= e of Drainage Area= ghted Average CN= nent (Data in the e-Development CN=	9968 98 9968 9968 98 sft 98 section is only used i 73	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN=	9968 98 9968 sft 98 nis section is only used i 73	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S	ment e Impervious Area= npervious Area CN= e of Drainage Area= ghted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate=	9968 98 9968 sft 98 nis section is only used i 73	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S Design S	ment e Impervious Area= npervious Area CN= e of Drainage Area= ghted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate=	9968 98 9968 sft 98 nis section is only used i 73 10 in/hr (See Note 4 in/hr	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S Design S	ment e Impervious Area= npervious Area CN= e of Drainage Area= ghted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate=	9968 98 9968 sft 98 nis section is only used i 73 10 in/hr (See Note 4 in/hr	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I e 4) Destin Soil Ir	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr ifiltration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S Design S Design Storms Used Fo	ment e Impervious Area= npervious Area CN= ighted Average Area= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations	9968 98 9968 sft 98 nis section is only used i 73 10 in/hr (See Note 4 in/hr	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I e 4) Destin Soil Ir	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S Design S Design Storms Used For Requirement	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth	9968 98 9968 sft 98 nis section is only used i 73 10 in/hr (See Note 4 in/hr	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I e 4) Destin Soil Ir	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr ufiltration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S Design S Design Storms Used For Requirement Pollution Reduction	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches	9968 98 9968 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I e 4) Destin Soil Ir	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr tfiltration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pro Soil Data Tested S Design Storms Used For Requirement Pollution Reduction Flow Control	ment e Impervious Area= npervious Area CN= e of Drainage Area= ghted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1 inches	9968 98 9968 98 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I 2.4) Destin Soil Ir	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr tfiltration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developm Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1	9968 98 9968 98 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I 24) Destin Soil Ir	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches	9968 98 9968 sft 98 nis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre-I 2.4) Destin Soil Ir	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr ifiltration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in the e-Development CN= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1	9968 98 9968 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- e 4) Destin Soil Ir	ervious Area= 0 sqft ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in the e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oir Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches Facility Type=	9968 98 9968 98 sft 98 is section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- ation 2000 24) Destin Soil In Soil In	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in the e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oir Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches Surface Width=	9968 98 9968 98 sft 98 is section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- a 4) Destin Soil Ir Soil Ir Facility Facility Surfa	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 980 sqft ce Perimeter= 138 ft	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developn Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data	ment e Impervious Area= npervious Area CN= ighted Average Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oir Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches 5.1 surface Width= Surface Width= Surface Length=	9968 98 9968 98 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control ft 49 ft	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- e 4) Destin Soil Ir Soil Ir Facility Facility Surfa Facility Surfa	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 980 sqft ce Perimeter= 138 ft Bottom Area= 602 sqft	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developm Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oir Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches 5.1 surface Width= Surface Width= Surface Length= acility Side Slopes=	9968 98 9968 98 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control Storn Sto	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- e 4) Destin Soil Ir Soil Ir Facility Facility Surfa Facility Facility Botto	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 980 sqft ce Perimeter= 138 ft Bottom Area= 602 sqft om Perimeter= 114 ft	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developm Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data Facility Data	ment e Impervious Area= npervious Area CN= e of Drainage Area= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches 5.1 inches 5.1 inches Surface Width= Surface Length= acility Side Slopes= Ponding Depth	9968 98 9968 98 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control Flood Control Flood Control Flood Control ft 49 ft 3 to 1	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- e 4) Destin Soil Ir Soil Ir Facility Facility Surfa Facility Surfa Facility Botto	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 980 sqft ce Perimeter= 138 ft Bottom Area= 602 sqft om Perimeter= 114 ft	
Site Data-Post Develop Total Square Footag In Total Square Footag Wei Site Data-Pre Developm Pre Soil Data Tested S Design Storms Used Fe Requirement Pollution Reduction Flow Control Destination Facility Data Facility Data	ment e Impervious Area= npervious Area CN= ighted Average CN= nent (Data in th e-Development CN= oil Infiltration Rate= oil Infiltration Rate= oil Infiltration Rate= or Calculations Rainfall Depth 0.8 inches 5.1 inches 5.1 inches 5.1 inches 5.1 inches Surface Width= Surface Length= acility Side Slopes= Ponding Depth mwater Facility=	9968 98 9968 98 sft 98 sis section is only used i 73 10 in/hr (See Note 4 in/hr Design Storm Water Quality Flood Control Flood Control Flood Control Flood Control Flood Control ft 49 ft 3 to 1 12 in	Total Square Footage P Pervi Time of Concentration Post I if Flow Control is required) Time of Concentration Pre- et 4) Destin Soil Ir Soil Ir Facility Facility Surfa Facility Surfa Facility Botto E	ervious Area= 0 ous Area CN= 85 Development= 5 min Development= 5 min ation Design= 4 in/hr filtration Rate Surface Area= 980 sqft ce Perimeter= 138 ft Bottom Area= 602 sqft om Perimeter= 114 ft sasin Volume= 809.0 cf	

Pollution Reduction-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.041	cfs Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 520	cf Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 0.0	in			
Drawdown Time= 0.2	hours			
Yes Facility Sizing Meets Poll	ution Reduction Standards?			
YES Meets Requirement o	f No Facility Flooding?			
YES Meets Requirement for	or Maximum of 18 Hour Drawdown Time?			
Flow Control-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.305	cfs Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 3998	cf Total Overflow Volume= 0 cf			
	Peak Off-Site Flow Rate			
Max. Depth of Stormwater in Facility= 8.8	in Filtration Facility Underdrain= N\A cfs			
Drawdown Time= 0.2	hours			
Pre-Development Runoff Data	ofo			
Total Punoff Volume - 1033	cis			
Yes Facility Sizing Meets Flow	v Control Standards?			
YES Meets Requirement for YES MEETS REQUIRE YES MEETS	or Post Development offsite flow less or equal to Pre-Development Flow? or Maximum of 18 Hour Drawdown Time?			
Destination-Calculation Results				
Peak Flow Rate to Stormwater Facility = 0.305	cfs Peak Facility Overflow Rate= 0.000 cfs			
Total Runoff Volume to Stormwater				
Facility = 3998	cf Total Overflow Volume= 0 cf			
Max. Depth of Stormwater in Facility= 8.8	in			
Drawdown Time= 0.2	hours			
Yes Facility Sizing Meets Des	tination Standards?			
YES Meets Requirement o	f No Facility Flooding?			
YES Meets Requirement for	or Maximum of 30 hour Drawdown Time?			
EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
---	---	--------------------------------------	--	------------------------------
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date:	<u>7/25/2023</u>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number:	NA
	Florence, OR		Catchment ID:	<u>2E</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1. Complete this form for	each drainage catch	ment in the project site the	at is to be sized per the Presum	ptive Approach.
2. Provide a distinctive C	atchment ID for each	facility coordinated with the	he site basin map to correlate th	e appropriate
calculations with the fa	acility.	,	·	
3. The maximum drainad	e catchment to be m	odeled per the Presumptiv	e Approach is 1 acre (43.560 S	F)
4 For infiltration facilities	in Class A or B soils	where no infiltration testin	g has been perfromed use an in	filtration rate of 0.5 in/hr
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for top	soil/arowing medium	
Design Requirements:				
Chasse "Ves" from the d	randawa bayaa balay	upout to the design stand	arda raquiramanta far thia facility	
Choose Yes from the d		v next to the design standa	ards requirements for this facility	<i>.</i>
Pollution Reducti	on (PR) Yes			
Flow Cont	rol (FC) Yes			
Destinati	on (DT) Yes	*An infiltration facility must be ch	osen as the facility type to meet destinat	ion requirements
Site Data-Post Develop	ment			
Tatal Orange Franks		00700	Tatal Original Factoria B	
Iotal Square Footage Impervious Area= 20/96 sqft Iotal Square Footage Pervious Area= 0 sqft				
In	pervious Area CN=	98	Perv	ious Area CN= 85
		00700 //		
Total Square Footage	e of Drainage Area=	20796 sft	Time of Concentration Post	Development= 5 min
Wei	ghted Average CN=	98		
Site Data-Pre Developn	nent (Data in th	is section is only used i	f Flow Control is required)	
Pre	e-Development CN=	73	Time of Concentration Pre-	Development= 5 min
Soil Data				
Tested S	oil Infiltration Rate=	10 in/hr (See Note	4) Destin	ation Design= 4 in/hr
Design S	oil Infiltration Rate=	4 in/hr	Soil Ir	filtration Rate
Design Storms Used Fo	or Calculations			
Doolgh otoniio ocou i				
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
Facility Type= Infiltration Rain Garden Facility Surface Area= 1672.53 soft				
	Surface Width= 19.7 ft Facility Surface Perimeter= 200.2 ft			ce Perimeter= 209.2 ft
Surface ength= 84.0 ft Facility Bottom Area= 1081 saft			Bottom Area= 1081 saft	
Surface Lengur 04.9 IL Facility Bottom Bavimator 405 H			m Perimeter= 185 ft	
Max Ponding Denth				
in Stormwater Facility= 12 in Basin Volume= 1394 7 cf				
Depth of Grow	/ing Medium (Soil)=	18 in	Ratio of Facility Area to Imp	ervious Area= 0.080
Depth of Glow			Natio of Lacinty Area to imp	

Pollution Reduction-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.086 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 1084 cf	Total Overflow Volume= 0 cf		
Max. Depth of Stormwater in Facility= 0.0 in			
Drawdown Time= 0.2 hours			
Yes Facility Sizing Meets Pollution Re	eduction Standards?		
YES Meets Requirement of No Faci	ility Flooding?		
YES Meets Requirement for Maxim	um of 18 Hour Drawdown Time?		
Flow Control-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.637 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 8341 cf	Total Overflow Volume= 0 cf		
	Peak Off-Site Flow Rate		
Max. Depth of Stormwater in Facility= 11.6 in	Filtration Facility Underdrain= N\A cfs		
Drawdown Time= 0.2 hours			
Pre-Development Runoff Data			
Peak Flow Rate = 0.269 cfs			
lotal Runoff Volume = 4034 cf			
Yes Facility Sizing Meets Flow Contro	ol Standards?		
YES Meets Requirement for Post Development offsite flow less or equal to Pre-Development Flow? YES Meets Requirement for Maximum of 18 Hour Drawdown Time?			
Destination-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.637 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 8341 cf	Total Overflow Volume= 0 cf		
Max. Depth of Stormwater in Facility= 11.6 in			
Drawdown Time= 0.2 hours			
Yes Facility Sizing Meets Destination Standards?			
YES Meets Requirement of No Facility Flooding?			
YES Meets Requirement for Maxim	um of 30 hour Drawdown Time?		

EUGENE	Stormwater Surface Filtration/Infiltration Facility Sizing Spreadsheet 24 Hour Storm, NRCS Type 1A Rainfall Distribution City of Eugene			
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date	: <u>7/25/2023</u>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number	: <mark>NA</mark>
	Florence, OR		Catchment ID:	<u>2F</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1. Complete this form for	each drainage catch	ment in the project site the	at is to be sized per the Presum	ptive Approach.
2. Provide a distinctive C	atchment ID for each	facility coordinated with th	ne site basin map to correlate tl	ne appropriate
calculations with the fa	acility.			
3. The maximum drainag	e catchment to be m	odeled per the Presumptiv	e Approach is 1 acre (43,560 S	ŝF)
4.For infiltration facilities	in Class A or B soils	where no infiltration testing	g has been perfromed use an ir	nfiltration rate of 0.5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for top:	soil/growing medium.	
Design Requirements:				
Choose "Yes" from the d	ropdown boxes belov	v next to the design standa	ards requirements for this facilit	у.
Pollution Reducti		1		
Foliation Reduct				
Flow Cont				
Destinati	on (DT) tes	*An infiltration facility must be ch	osen as the facility type to meet destina	tion requirements
Site Data-Post Develop	mont			
Site Data-Post Develop	ment			
Total Square Footag	Total Square Footage Impervious Area= 4862 sqft Total Square Footage Pervious Area= 0 sqft			
In	pervious Area CN=	98	Perv	rious Area CN=85
Total Square Footage	e of Drainage Area=	4862 sft	Time of Concentration Post	Development= 5 min
Wei	ghted Average CN=	98		
Site Data-Pre Developn	nent (Data in th	is section is only used if	Flow Control is required)	
Pre	-Development CN=	73	Time of Concentration Pre-	Development= 5 min
Soil Data				
Trated 0		10 in/br (0, , b) (
Tested Se	bil Inflitration Rate=	10 III/III (See Note	4) Destii Soil I	nation Design= 4 in/nr
Design 5		4 11/11	3011	
Design Storms Used Fo	or Calculations			
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
	Eacility Type=	Infiltration Rain Garden	Eacility	Surface Area= 437.8 soft
Facility Surface Area 437.8 Sqll				
Surface Length= 22 ft Facility Bottom Area= 222 eaft				
Facility Side Slopes= 3 to 1 Facility Bottom Perimeter= 60 ft				
Max. Ponding Depth				
in Stormwater Facility= 12 in Basin Volume= 348.1 cf				
Depth of Grow	ring Medium (Soil)=	18 in	Ratio of Facility Area to Imp	pervious Area= 0.090
			-	

Pollution Reduction-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.020 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 253 cf	Total Overflow Volume= 0 cf		
Max. Depth of Stormwater in Facility= 0.0 in			
Drawdown Time= 0.2 hours			
Yes Facility Sizing Meets Pollution	Reduction Standards?		
YES Meets Requirement of No Fa	cility Flooding?		
YES Meets Requirement for Maxin	num of 18 Hour Drawdown Time?		
Flow Control-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.149 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 1950 cf	Total Overflow Volume= 0 cf		
	Peak Off-Site Flow Rate		
Max. Depth of Stormwater in Facility= 11.2 in	Filtration Facility Underdrain= N\A cfs		
Drawdown Time= 0.2 hours			
Pre-Development Runoff Data			
Peak Flow Rate = 0.063 cfs			
lotal Runoff Volume = 943 cf			
Yes Facility Sizing Meets Flow Cont	rol Standards?		
YES Meets Requirement for Post Development offsite flow less or equal to Pre-Development Flow? YES Meets Requirement for Maximum of 18 Hour Drawdown Time?			
Destination-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.149 cfs	Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 1950 cf	Total Overflow Volume=0 cf		
Max. Depth of Stormwater in Facility= 11.2 in			
Drawdown Time= 0.2 hours			
Yes Facility Sizing Meets Destination Standards?			
YES Meets Requirement of No Facility Flooding?			
YES Meets Requirement for Maxim	num of 30 hour Drawdown Time?		

EUGENE	Stormwater Sur 24 Hour Storm, City of Eugene	face Filtration/Infilt NRCS Type 1A Rain	ration Facility Sizing Spre nfall Distribution	adsheet
	Version 2.1			
Project Information				
Project Name:	Myrtle Glenn PUD		Date	: <mark>7/25/2023</mark>
Project Address:	<u>18-12-22-11-01200</u>		Permit Number	: NA
	Florence, OR		Catchment ID:	<u>2G</u>
Designer:	Clint Beecroft			
Company:	EGR & Associates			
Instructions:				
1. Complete this form for	each drainage catch	ment in the project site t	that is to be sized per the Presun	nptive Approach.
2. Provide a distinctive C	atchment ID for each	facility coordinated with	the site basin map to correlate t	he appropriate
calculations with the fa	acility.			
3. The maximum drainag	e catchment to be m	odeled per the Presump	tive Approach is 1 acre (43,560 \$	SF)
4.For infiltration facilities	in Class A or B soils	where no infiltration test	ing has been perfromed use an i	nfiltration rate of 0.5 in/hr.
For all facilities use a	maximum soil infiltrat	ion rate of 2.5 in/hr for to	psoil/growing medium.	
Design Requirements:			· · ·	
Choose "Yes" from the d	ropdown boxes belov	v next to the design stan	dards requirements for this facili	y.
Pollution Reducti	on (PR) Yes			
Flow Cont	rol (FC) Yes			
Destinati	on (DT) Yes	*An infiltration facility must be	choson as the facility type to most desting	tion requirements
Dootinuti		An initiation facility must be	chosen as the facility type to meet destine	lion requirements
Site Data-Post Develop	ment			
			-	
Total Square Footag	e Impervious Area=	4175 sqft	Total Square Footage	Pervious Area= 0 sqft
In	pervious Area CN=	98	Per	vious Area CN= <u>85</u>
Total Square Footage	e of Drainage Area=	4175 sft	Time of Concentration Post	Development= 10 min
Wei	ghted Average CN=	98		
Site Data-Pre Developm	nent (Data in th	is section is only used	l if Flow Control is required)	
Pro	-Development CN=	73	Time of Concentration Pre	Development= 5 min
	-Development on-	15		
Soil Data				
Tested Se	oil Infiltration Rate=	10 in/hr (See No	ote 4) Desti	nation Design= 4 in/hr
Design Se	oil Infiltration Rate=	4 in/hr	Soil	nfiltration Rate
Design Storms Used Fo	or Calculations			
Requirement	Rainfall Depth	Design Storm		
Pollution Reduction	0.8 inches	Water Quality		
Flow Control	5.1 inches	Flood Control		
Destination	5.1 inches	Flood Control		
Facility Data				
Facility Type= Infiltration Stormwater Planter Facility Surface Area= 272 coff				
Surface Widths 41ft Eacility Surface Designators 444ft				
Surface Lengths 68 ft Facility Rottom Areas 272 soft				
Surface Length - 00 to 1 Facility Bottom Parimeter - 2/2 Sql				
Max Ponding Denth				
in Stormwater Facility= 12 in Basin Volume= 272 0 cf				
Depth of Grow	ving Medium (Soil)=	18 in	Ratio of Facility Area to Im	
Deptil of Slow			Ratio of Facility Area to III	

Pollution Reduction-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.016 ct	fs Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 217 ct	Total Overflow Volume= 0 cf		
Max. Depth of Stormwater in Facility= 0.0 in	1		
Drawdown Time= 0.2 h	ours		
Yes Facility Sizing Meets Pollut	ion Reduction Standards?		
YES Meets Requirement of M	Io Facility Flooding?		
YES Meets Requirement for	Maximum of 18 Hour Drawdown Time?		
Flow Control-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.114 ci	fs Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 1671 ct	Total Overflow Volume= 0 cf		
	Peak Off-Site Flow Rate		
Max. Depth of Stormwater in Facility= 11.5 in	Filtration Facility Underdrain= N\A cfs		
Drawdown Time= 0.2 h	ours		
Pre-Development Runoff Data			
Peak Flow Rate = 0.054 ct	S		
Total Runoff Volume = 810 ct			
Yes Facility Sizing Meets Flow	Control Standards?		
YES Meets Requirement for Post Development offsite flow less or equal to Pre-Development Flow? YES Meets Requirement for Maximum of 18 Hour Drawdown Time?			
Destination-Calculation Results			
Peak Flow Rate to Stormwater Facility = 0.114 ct	is Peak Facility Overflow Rate= 0.000 cfs		
Total Runoff Volume to Stormwater			
Facility = 1671 ct	Total Overflow Volume=0cf		
Max. Depth of Stormwater in Facility= 11.5 in			
Drawdown Time= 0.2 hours			
Yes Facility Sizing Meets Destination Standards?			
YES Meets Requirement of No Facility Flooding?			
YES Meets Requirement for	Maximum of 30 hour Drawdown Time?		

Hydrograph Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2018 by Autodesk, Inc. v2018.3

Hyd. No. 1

Area Drain

Hydrograph type	= SCS Runoff	Peak discharge	= 0.172 cfs
Storm frequency	= 25 yrs	Time to peak	= 7.97 hrs
Time interval	= 2 min	Hyd. volume	= 2,716 cuft
Drainage area	= 0.350 ac	Curve number	= 73
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.00 in	Distribution	= Type IA
Storm duration	= 24 hrs	Shape factor	= 484

Wednesday, 07 / 26 / 2023

Norksheet	for	Overflow	1A
------------------	-----	-----------------	-----------

Headwater Elevation	
0.056	ft³/s
76.96	ft
73.17	ft
3.33	US
2.09	ft
0	
77.00	ft
0.04	ft
-3.79	ft
0.08	ft²
0.67	ft/s
2.17	ft
2.09	ft
	Headwater Elevation 0.056 76.96 73.17 3.33 2.09 0 77.00 0.04 -3.79 0.08 0.67 2.17 2.09

 Bentley Systems, Inc. Haestad Methods SoButitie CFitterMaster V8i (SELECTseries 1) [08.11.01.03]

 7/25/2023 12 33 31 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.103	ft³/s
Crest Elevation	76.34	ft
Tailwater Elevation	71.79	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.40	ft
Headwater Height Above Crest	0.06	ft
Tailwater Height Above Crest	-4.55	ft
Flow Area	0.13	ft²
Velocity	0.82	ft/s
Wetted Perimeter	2.21	ft
Top Width	2.09	ft

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.069	ft³/s
Crest Elevation	75.97	ft
Tailwater Elevation	71.04	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.02	ft
Headwater Height Above Crest	0.05	ft
Tailwater Height Above Crest	-4.93	ft
Flow Area	0.10	ft²
Velocity	0.72	ft/s
Wetted Perimeter	2.18	ft
Top Width	2.09	ft

 Bentley Systems, Inc. Haestad Methods SoButitie©Eituw/Master V8i (SELECTseries 1) [08.11.01.03]

 7/25/2023 1 05 44 PM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Work	sheet	for	Overflow	1 B -3
------	-------	-----	----------	---------------

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.067	ft³/s
Crest Elevation	75.70	ft
Tailwater Elevation	70.67	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	75.75	ft
Headwater Height Above Crest	0.05	ft
Tailwater Height Above Crest	-5.03	ft
Flow Area	0.09	ft²
Velocity	0.71	ft/s
Wetted Perimeter	2.18	ft
Top Width	2.09	ft

Worksheet	for	Overflow	1	С
-----------	-----	----------	---	---

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.105	ft³/s
Crest Elevation	75.04	ft
Tailwater Elevation	69.19	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	75.10	ft
Headwater Height Above Crest	0.06	ft
Tailwater Height Above Crest	-5.85	ft
Flow Area	0.13	ft²
Velocity	0.82	ft/s
Wetted Perimeter	2.21	ft
Top Width	2.09	ft

W	orksheet	for	Overflow	1D
---	----------	-----	-----------------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.130	ft³/s
Crest Elevation	74.33	ft
Tailwater Elevation	69.67	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	74.40	ft
Headwater Height Above Crest	0.07	ft
Tailwater Height Above Crest	-4.66	ft
Flow Area	0.15	ft²
Velocity	0.88	ft/s
Wetted Perimeter	2.23	ft
Top Width	2.09	ft

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.083	ft³/s
Crest Elevation	76.75	ft
Tailwater Elevation	72.25	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.80	ft
Headwater Height Above Crest	0.05	ft
Tailwater Height Above Crest	-4.50	ft
Flow Area	0.11	ft²
Velocity	0.76	ft/s
Wetted Perimeter	2.19	ft
Top Width	2.09	ft

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.063	ft³/s
Crest Elevation	76.42	ft
Tailwater Elevation	71.80	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.46	ft
Headwater Height Above Crest	0.04	ft
Tailwater Height Above Crest	-4.62	ft
Flow Area	0.09	ft²
Velocity	0.69	ft/s
Wetted Perimeter	2.18	ft
Top Width	2.09	ft

Worksheet for Overflow 1F-1

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.063	ft³/s
Crest Elevation	75.97	ft
Tailwater Elevation	70.84	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.01	ft
Headwater Height Above Crest	0.04	ft
Tailwater Height Above Crest	-5.13	ft
Flow Area	0.09	ft²
Velocity	0.69	ft/s
Wetted Perimeter	2.18	ft
Top Width	2.09	ft

Worksho	eet for	Overflow	1F-2
---------	---------	-----------------	------

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.060	ft³/s
Crest Elevation	75.74	ft
Tailwater Elevation	70.39	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	75.78	ft
Headwater Height Above Crest	0.04	ft
Tailwater Height Above Crest	-5.35	ft
Flow Area	0.09	ft²
Velocity	0.68	ft/s
Wetted Perimeter	2.17	ft
Top Width	2.09	ft

Worksheet fo	or Overflow 1G
--------------	----------------

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.086	ft³/s
Crest Elevation	75.24	ft
Tailwater Elevation	69.50	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	75.29	ft
Headwater Height Above Crest	0.05	ft
Tailwater Height Above Crest	-5.74	ft
Flow Area	0.11	ft²
Velocity	0.77	ft/s
Wetted Perimeter	2.20	ft
Top Width	2.09	ft

7/26/2023 7 01 46 AM

WOLKSHEEL IOL OVELIIOW ILL-I

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.086	ft³/s
Crest Elevation	74.66	ft
Tailwater Elevation	69.92	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	74.71	ft
Headwater Height Above Crest	0.05	ft
Tailwater Height Above Crest	-4.74	ft
Flow Area	0.11	ft²
Velocity	0.77	ft/s
Wetted Perimeter	2.20	ft
Top Width	2.09	ft

Worksheet for Overflow 1H-2

Headwater Elevation	
0.067	ft³/s
74.38	ft
69.42	ft
3.33	US
2.09	ft
0	
74.43	ft
0.05	ft
-4.96	ft
0.09	ft²
0.71	ft/s
2.18	ft
2.09	ft
	Headwater Elevation A Control

Worksheet for Overflow	2A
------------------------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.131	ft³/s
Crest Elevation	77.63	ft
Tailwater Elevation	73.84	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	77.70	ft
Headwater Height Above Crest	0.07	ft
Tailwater Height Above Crest	-3.79	ft
Flow Area	0.15	ft²
Velocity	0.89	ft/s
Wetted Perimeter	2.23	ft
Top Width	2.09	ft

Worksheet	for	Overflow	2B
-----------	-----	-----------------	-----------

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.428	ft³/s
Crest Elevation	77.18	ft
Tailwater Elevation	73.14	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	77.34	ft
Headwater Height Above Crest	0.16	ft
Tailwater Height Above Crest	-4.04	ft
Flow Area	0.33	ft²
Velocity	1.31	ft/s
Wetted Perimeter	2.40	ft
Top Width	2.09	ft

Worksheet	for	Overflow	2C
-----------	-----	-----------------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.338	ft³/s
Crest Elevation	76.71	ft
Tailwater Elevation	72.19	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.84	ft
Headwater Height Above Crest	0.13	ft
Tailwater Height Above Crest	-4.52	ft
Flow Area	0.28	ft²
Velocity	1.21	ft/s
Wetted Perimeter	2.36	ft
Top Width	2.09	ft

Worksheet	for	Overflow	2D
-----------	-----	-----------------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.305	ft³/s
Crest Elevation	76.27	ft
Tailwater Elevation	71.29	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.39	ft
Headwater Height Above Crest	0.12	ft
Tailwater Height Above Crest	-4.98	ft
Flow Area	0.26	ft²
Velocity	1.17	ft/s
Wetted Perimeter	2.34	ft
Top Width	2.09	ft

Worksheet	for	Overflow	2E
------------------	-----	-----------------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.637	ft³/s
Crest Elevation	75.60	ft
Tailwater Elevation	70.13	ft
Weir Coefficient	3.33	US
Crest Length	2.62	ft
Number Of Contractions	0	
Results		
Headwater Elevation	75.77	ft
Headwater Height Above Crest	0.17	ft
Tailwater Height Above Crest	-5.47	ft
Flow Area	0.46	ft²
Velocity	1.39	ft/s
Wetted Perimeter	2.97	ft
Top Width	2.62	ft

Worksheet for	Overflow	2F
---------------	----------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.149	ft³/s
Crest Elevation	75.47	ft
Tailwater Elevation	70.00	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	75.55	ft
Headwater Height Above Crest	0.08	ft
Tailwater Height Above Crest	-5.47	ft
Flow Area	0.16	ft²
Velocity	0.92	ft/s
Wetted Perimeter	2.24	ft
Top Width	2.09	ft

Worksheet	for	Overflow	2G
-----------	-----	----------	----

Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	0.114	ft³/s
Crest Elevation	76.00	ft
Tailwater Elevation	70.80	ft
Weir Coefficient	3.33	US
Crest Length	2.09	ft
Number Of Contractions	0	
Results		
Headwater Elevation	76.06	ft
Headwater Height Above Crest	0.06	ft
Tailwater Height Above Crest	-5.20	ft
Flow Area	0.13	ft²
Velocity	0.85	ft/s
Wetted Perimeter	2.22	ft
Top Width	2.09	ft

Worksheet for Pipe P1C					
Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data					
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.056	ft/ft in ft³/s			
Results					
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.2 0.03 0.52 0.7 0.47 0.11 14.7 0.00680 1.76 0.05 0.15 1.20 1.30 1.21 0.00002	in ft ² ft in ft ft % ft/ft ft/s ft ft ft ft ft % ft ft ft			
	SuperChildan				
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft			
GVF Output Data					
Upstream Depth Profile Description	0.0	in			
Profile Headloss	0.00	ft %			
Normal Depth Over Rise	14.66	%			
Downstream Velocity	Infinity	ft/s			

7/26/2023 9 10 11 AM

Worksheet for Pipe P1C

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.2	in
Critical Depth	0.11	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00680	ft/ft

Worksheet for Pipe P1B			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient	0.013	6/A	
Diameter	0.01000	in	
Discharge	0.159	ft³/s	
Results			
Normal Depth	2.0	in	
Flow Area	0.07	ft²	
Wetted Perimeter	0.69	ft	
Hydraulic Radius	1.2	in	
Top Width	0.57	ft	
Critical Depth	0.18	ft	
Percent Full	24.5	%	
Critical Slope	0.00643	ft/ft	
Velocity	2.40	ft/s	
Velocity Head	0.09	ft	
Specific Energy	0.25	ft	
Froude Number	1.24		
Maximum Discharge	1.30	ft³/s	
Discharge Full	1.21	ft³/s	
Slope Full	0.00017	ft/ft	
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth	0.0	in	
Length	0.00	ft	
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0	in	
Profile Description			
Profile Headloss	0.00	ft	
Average End Depth Over Rise	0.00	%	
Normal Depth Over Rise	24.51	%	
Downstream Velocity	Infinity	ft/s	

7/26/2023 9 11 17 AM

Worksheet for Pipe P1B

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	2.0	in
Critical Depth	0.18	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00643	ft/ft

Worksheet for Pipe P1A			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.228	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	2.4 0.09 0.76 1.3 0.61 0.22 29.4 0.00646 2.66 0.11 0.31 1.25 1.30 1.21 0.00036	in ft ² ft in ft ft ft/ft ft/s ft ft ft ft ft ft ft	
GVF Input Data			
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	ft %	
Normal Depth Over Rise	29.45	70 %	
Downstream Velocity	Infinity	ft/s	

Worksheet for Pipe P1A

Infinity	ft/s
2.4	in
0.22	ft
0.01000	ft/ft
0.00646	ft/ft
	Infinity 2.4 0.22 0.01000 0.00646

Worksheet for Pipe P2			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.295	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	2.7 0.10 0.82 1.5 0.63 0.25 33.6 0.00651 2.86 0.13 0.35 1.25 1.30 1.21 0.00060	in ft ² ft in ft ft ft ft/ft ft/s ft ft ft ft ft ft/s ft ft ft ft	
	SuperCritical		
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss Average End Depth Over Rise Normal Depth Over Rise	0.00 0.00 33.62	rt % %	
Downstream Velocity	Infinity	ft/s	

7/26/2023 9 13 12 AM

Worksheet for Pipe P2

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	2.7	in
Critical Depth	0.25	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00651	ft/ft

Worksheet for Pipe P3			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.01 0.0100 0.40	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	3. 0.1 0.9 1. 0.6 0.2 39. 0.0067 3.1 0.1 0.1 0.1 0.4 1.2 1.3 1.2 0.0011	in ft ² ft in ft ft ft ft/ft ft/s ft ft ft ft ³ /s ft ³ /s ft/ft	
GVF Input Data			
Downstream Depth Length Number Of Steps	0. 0.0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.	in	
Profile Headloss Average End Depth Over Rise	0.0	ft %	
Normal Depth Over Rise Downstream Velocity	39.6 Infinit	% ft/s	

7/26/2023 9 14 01 AM
GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	3.2	in
	0.2	ft
Channel Slone	0.01000	ft/ft
	0.00675	ft/ft
Childai Slope	0.00075	10/10

Bentley Systems, Inc. Haestad Methods SoBdititle@EnderMaster V8i (SELECTseries 1) [08.11.01.03] Page 2 of 2

Worksheet for Pipe P4C		
Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.083	ft/ft in ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.4 0.04 0.58 0.9 0.51 0.13 17.7 0.00664 1.98 0.06 0.18 1.22 1.30 1.21 0.00005	in ft ² ft in ft ft ft/ft ft/s ft ft ft ft ft ft ft ft/s ft ft ft ft ft ft ft ft ft ft
GVF Input Data	Superchildar	
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft
GVF Output Data		
Upstream Depth Profile Description	0.0	in
Profile Headloss	0.00	ft %
Normal Depth Over Rise	17.75	%
Downstream Velocity	Infinity	ft/s

7/26/2023 9 16 30 AM

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	1.4	in
Critical Depth	0.13	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00664	ft/ft

	Worksheet for Pip	pe P4B
Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.146	13 10 ft/ft 8 in 16 ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.5 0.00 0.6 1.7 0.56 0.17 23.5 0.00645 2.34 0.00645 2.34 0.00 0.24 1.24 1.30 1.27 0.00015	9 in 96 ft ² 97 ft 97 ft 98 ft 99 ft 99 ft 90 ft 924 ft 935 ft ³ /s 94 ft ³ /s 95 ft/ft
CVE Input Data	SuperCritical	
Downstream Depth Length Number Of Steps	0.0 0.00 (.0 in)0 ft 0
GVF Output Data		
Upstream Depth Profile Description	0.0	.0 in
Profile Headloss	0.00	00 %
Normal Depth Over Rise	23.45	15 %
Downstream Velocity	Infinit	ty ft/s

Bentley Systems, Inc. Haestad Methods SoBditite CEnterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Upstream Velocity	Infinity	ft/s
Normal Depth	1.9	in
Critical Depth	0.17	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00645	ft/ft

GVF Output Data

Worksheet for Pipe P4A		
Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.209	ft/ft in ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	2.3 0.08 0.75 1.3 0.60 0.21 28.1 0.00641 2.59 0.10 0.29 1.25 1.30 1.21 0.00030	in ft ² ft in ft ft ft % ft/ft ft/s ft ft ft ft ft ft ft
	SuperCritical	
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft
GVF Output Data		
Upstream Depth Profile Description	0.0	in
Profile Headloss	0.00	π %
Normal Depth Over Rise	28.14	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods So Baindle © Finter Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 18 11 AM

Infinity	ft/s
2.3	in
0.21	ft
0.01000	ft/ft
0.00641	ft/ft
	Infinity 2.3 0.21 0.01000 0.00641

Bentley Systems, Inc. Haestad Methods SoBdititle@EnderMaster V8i (SELECTseries 1) [08.11.01.03] 7/26/2023 9 18 11 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

	Worksheet for Pip	e P5
Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.269	ft/ft in ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	2.6 0.10 0.80 1.4 0.62 0.24 32.1 0.00649 2.78 0.12 0.33 1.24 1.30 1.21 0.00050	in ft ² ft in ft ft ft/ft ft/s ft ft ft ft ft ft ft
	SuperCritical	
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft
GVF Output Data		
Upstream Depth Profile Description	0.0	in
Profile Headloss Average End Depth Over Rise Normal Depth Over Rise	0.00 0.00 32.10	π % %
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods So Baindle © Finter Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 19 02 AM

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	2.6	in
Critical Depth	0.24	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00649	ft/ft

	Worksheet for Pig	pe P6
Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.355	3 D ft/ft 3 in 5 ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	3.0 0.12 0.87 1.6 0.64 0.28 37.1 0.00663 3.01 0.14 0.39 1.24 1.30 1.21 0.00086	0 in 2 ft ² 7 ft 3 in 4 ft 3 ft 1 % 3 ft/ft 1 ft/s 4 ft 9 ft 4 t 1 ft ³ /s 5 ft/ft
Flow Type	SuperCritical	
Downstream Depth Length Number Of Steps	0.0 0.00 C) in) ft)
GVF Output Data		
Upstream Depth Profile Description	0.0) in
Profile Headloss Average End Depth Over Rise Normal Depth Over Rise	0.00 0.00 37 12	J ft D % 2 %
Downstream Velocity	Infinity	y ft/s

7/26/2023 9 19 49 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	3.0	in
Critical Depth	0.28	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00663	ft/ft

Worksheet for Pipe P7		
Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.131	3 0 ft/ft 8 in 1 ft³/s
Results		
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.6 0.00 0.66 1.1 0.55 0.17 22.2 0.00650 2.27 0.00 0.22 1.24 1.30 1.21 0.00012	8 in 6 ft ² 5 ft 1 in 5 ft 7 ft 2 % 0 ft/ft 7 ft/s 8 ft 3 ft 4 0 ft ³ /s 1 ft ³ /s 2 ft/ft
GVF Input Data	SuperChucai	
Downstream Depth Length Number Of Steps	0.0 0.00 (0 in 0 ft 0
GVF Output Data		
Upstream Depth Profile Description	0.0	0 in
Profile Headloss Average End Depth Over Rise	0.00 0.00	0 ft 0 % 3 %
Downstream Velocity	22.23 Infinity	y ft/s

7/26/2023 9 20 50 AM

 Bentley Systems, Inc. Haestad Methods SoBdittle@FitterMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Infinity	ft/s
1.8	in
0.17	ft
0.01000	ft/ft
0.00650	ft/ft
	Infinity 1.8 0.17 0.01000 0.00650

 Bentley Systems, Inc. Haestad Methods SoButitute@EnterMaster V8i (SELECTseries 1) [08.11.01.03]

 7/26/2023 9 20 50 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 2 of 2

Worksheet for Pipe P8			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.559	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	3.8 0.16 1.02 1.9 0.67 0.35 47.8 0.00720 3.40 0.18 0.50 1.20 1.30 1.21 0.00214	in ft ² ft in ft ft % ft/ft ft/s ft ft ft ft ft ft ft ft	
GVF Input Data	SuperChildan		
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss Average End Depth Over Rise	0.00 0.00	ft %	
Normal Depth Over Rise	47.77 Infinity	% tt/s	
Downstream velocity	Inning	105	

7/26/2023 9 21 47 AM

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	3.8	in
Critical Depth	0.35	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00720	ft/ft

Worksheet for Pipe P9			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.897	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	5.1 0.24 1.24 2.3 0.64 0.45 64.2 0.00871 3.79 0.22 0.65 1.10 1.30 1.21 0.00551	in ft ² ft in ft ft ft % ft/ft ft/s ft ft ft ft ft ft	
Flow Type	SuperCritical		
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Protile Headloss Average End Depth Over Rise Normal Depth Over Rise	0.00 0.00 64.17	ft % %	
Downstream Velocity	Infinity	ft/s	

7/26/2023 9 22 29 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	5.1	in
Critical Depth	0.45	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00871	ft/ft

Worksheet for Pipe P10			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 1.202	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	6.5 0.30 1.50 2.4 0.52 0.52 81.5 0.01093 3.95 0.24 0.79 0.91 1.30 1.21 0.00990	in ft ² ft in ft ft ft ft/ft ft/s ft ft ft ft ft ft/s ft ft ft ft ft/ft ft/s ft ft ft ft ft ft ft ft ft ft	
GVF Input Data	Gubonica		
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	ft	
Average End Depth Over Rise	0.00	%	
Downstream Velocity	81.49 Infinity	∞ ft/s	

Bentley Systems, Inc. Haestad Methods So Batitite CEnterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 23 17 AM

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	6.5	in
Critical Depth	0.52	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.01093	ft/ft
Critical Slope	0.01093	π/π

Worksheet for Pipe P11			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 10 1.839	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	7.0 0.41 1.65 3.0 0.76 0.61 70.1 0.00903 4.50 0.31 0.90 1.08 2.36 2.19 0.00705	in ft ² ft in ft ft ft % ft/ft ft/s ft ft/s ft ft ft ft ft	
GVF Input Data	SuperChildan		
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss Average End Depth Over Rise	0.00 0.00	ft %	
Normal Depth Over Rise Downstream Velocity	70.14 Infinity	% ft/s	

7/26/2023 9 24 24 AM

Upstream Velocity	Infinity	ft/s
Normal Depth	7.0	in
Critical Depth	0.61	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00903	ft/ft

GVF Output Data

Worksheet for Pipe P12			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 10 2.158	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	8.1 0.47 1.86 3.0 0.66 0.66 80.6 0.01044 4.58 0.33 1.00 0.95 2.36 2.19 0.00970 SubCritical	in ft ² ft in ft ft ft ft/ft ft/s ft ft ft ft ft ft ft ft	
GVF Input Data			
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	ft	
Average End Depth Over Rise	0.00	%	
Downstream Velocity	60.64 Infinity	70 ft/s	

Bentley Systems, Inc. Haestad Methods SoBditite©EnterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 53 27 AM

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	8.1	in
Critical Depth	0.66	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.01044	ft/ft

Worksheet for Pipe P13			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01490 12 2.913	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	7.2 0.49 1.77 3.3 0.98 0.73 59.9 0.00852 5.93 0.55 1.15 1.48 4.68 4.35 0.00669	in ft ² ft in ft ft % ft/ft ft/s ft ft ft ft ft ft ft ft ft	
Flow Type	SuperCritical		
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Average End Depth Over Rise	0.00	n %	
Normal Depth Over Rise Downstream Velocity	59.89 Infinity	% ft/s	

Bentley Systems, Inc. Haestad Methods So Baindle © Finter Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 55 07 AM

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	7.2	in
Critical Depth	0.73	ft
Channel Slope	0.01490	ft/ft
Critical Slope	0.00852	ft/ft

Worksheet for Pipe P14			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.130	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.8 0.06 0.65 1.1 0.55 0.16 22.1 0.00650 2.26 0.08 0.23 1.24 1.30 1.21 0.00012	in ft ² ft in ft ft % ft/ft ft/s ft ft ft ft ft ft ft	
	SuperCritical		
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	π %	
Normal Depth Over Rise	22.15	%	
Downstream Velocity	Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods So Baindre Center Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.8	in
Critical Depth	0.16	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00650	ft/ft

Worksheet for Pipe P15			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.06270 8 0.114	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.1 0.03 0.50 0.7 0.45 0.15 13.3 0.00650 4.15 0.27 0.36 2.97 3.25 3.03 0.00009	in ft ² ft in ft ft ft ft/ft ft/s ft ft ft ft ft ft/s ft ft ft ft	
	SuperCritical		
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	π %	
Normal Depth Over Rise Downstream Velocity	13.26 Infinity	% ft/s	

Bentley Systems, Inc. Haestad Methods SoButitie **©Fituw** Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 30 15 AM

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.1	in
Critical Depth	0.15	ft
Channel Slope	0.06270	ft/ft
Critical Slope	0.00650	ft/ft

Worksheet for Pipe P16			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.267	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	2.6 0.10 0.80 1.4 0.62 0.24 32.0 0.00649 2.78 0.12 0.33 1.24 1.30 1.21 0.00049	in ft ² ft in ft ft % ft/ft ft/s ft ft ft ft ³ /s ft ³ /s ft ³ /s	
	SuperCritical		
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in A	
Average End Depth Over Rise	0.00	n %	
Normal Depth Over Rise Downstream Velocity	31.97 Infinity	% ft/s	

Bentley Systems, Inc. Haestad Methods SoBlatintle CEntigerMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 32 18 AM

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	2.6	in
Critical Depth	0.24	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00649	ft/ft

Worksheet for Pipe P17			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.00500 10 0.397	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	3.5 0.17 1.05 1.9 0.27 34.5 0.00599 2.38 0.09 0.38 0.91 1.67 1.55 0.00033	in ft ² ft in ft ft ft 9% ft/ft ft/s ft ft/s ft ft ft ft ft	
	SubCritical		
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Prome Headloss	0.00	n %	
Normal Depth Over Rise Downstream Velocity	34.54 Infinity	% ft/s	

Bentley Systems, Inc. Haestad Methods So Baindre Center Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

GVF Output Data		
Lipstream Velocity	Infinity	ft/s
Normal Depth	3.5	in
	0.27	ft
Channel Slope	0.00500	ft/ft
Critical Slope	0.00599	ft/ft
	5.00555	i v i t

Worksheet for Pipe P18			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.01000 8 0.086	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	1.4 0.04 0.59 0.9 0.51 0.13 18.1 0.00664 2.00 0.06 0.18 1.22 1.30 1.21 0.00005	in ft ² ft in ft ft ft/ft ft/s ft ft ft ³ /s ft/ft ft/ft	
GVF Input Data	Superchildar		
Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	ft v	
Normal Depth Over Rise	18.06	70 %	
Downstream Velocity	Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods Soßtrictle CFinterMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Upstream Velocity	Infinity	ft/s
Normal Depth	1.4	in
Critical Depth	0.13	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.00664	ft/ft

GVF Output Data

Worksheet for Pipe P19			
Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope Diameter Discharge	0.013 0.05200 8 0.170	ft/ft in ft³/s	
Results			
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full	1.3 0.04 0.56 0.8 0.50 0.19 16.8 0.00642 4.38 0.30 0.41 2.77 2.96 2.76 0.00020	in ft ² ft in ft ft ft % ft/ft ft/s ft ft ft ft ft ft ft	
	SuperCritical		
GVF Input Data Downstream Depth Length Number Of Steps	0.0 0.00 0	in ft	
GVF Output Data			
Upstream Depth Profile Description	0.0	in	
Profile Headloss	0.00	п %	
Normal Depth Over Rise Downstream Velocity	16.83 Infinity	% ft/s	

Bentley Systems, Inc. Haestad Methods So Batitile © Finter Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

7/26/2023 9 52 40 AM
Worksheet for Pipe P19

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.3	in
Critical Depth	0.19	ft
Channel Slope	0.05200	ft/ft
Critical Slope	0.00642	ft/ft